Graph-Based Multi-resolution Temporal-Based Face Reconstruction

  • Charlotte Ghys
  • Nikos Paragios
  • Bénédicte Bascle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4291)


Reproducing high quality facial expressions is an important challenge in human-computer interaction. Laser-scanners offer an expensive solution to such a problem with image based alternatives being a low-resolution alternative. In this paper, we propose a new method for stereo reconstruction from multiple video pairs that is capable of producing high resolution facial models. To this end, a combinatorial optimization approach is considered and is coupled in time to produce high resolution depth maps. Such optimization is addressed with the use of graph-cuts leading to precise reconstruction of facial expressions that can then be used for animation.


Optical Flow Stereo Match Stereo Pair Super Resolution Epipolar Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alam, M., Bognar, J., Hardie, R., Yasuda, B.: Infrared Image Registration and High-Resolution Reconstruction Using Multiple Translationally Shifted Aliased Video Frames. IEEE Transactions on instrumentation and measurement 49, 185–203 (2000)CrossRefGoogle Scholar
  2. 2.
    Blanz, V., Vetter, T.: A Morphable Model for the Synthesis of 3d Faces. In: SIGGRAPH, pp. 187–194 (1999)Google Scholar
  3. 3.
    Boykov, Y., Kolmogorov, V.: An Experimental Comparison of Min-CutMax-Flow Algorithms for Energy Minimization in Vision. Pattern Analysis and Machine Intelligence 26, 1124–1137 (2004)CrossRefGoogle Scholar
  4. 4.
    Boykov, Y., Veksler, O., Zabih, R.: Efficient Approximate Energy Minimization via Graph Cuts. Pattern Analysis and Machine Intelligence 20(12), 1222–1239 (2001)CrossRefGoogle Scholar
  5. 5.
    Brox, T., Bruhn, A., Papenber, N., Weickert, J.: High Accuracy Optical Flow Estimation based on a Theory for Warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    DeCarlo, D., Metaxas, D.: Optical Flow Constraints on Deformable Models with Applications to Face Tracking. International Journal of Computer Vision (2000)Google Scholar
  7. 7.
    Faugeras, O.: Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT Press, Cambridge (1993)Google Scholar
  8. 8.
    Faugeras, O., Keriven, R.: Complete Dense Stereovision Using Level Set Methods. In: European Conference for Computer Vision, pp. 379–393 (1998)Google Scholar
  9. 9.
    Ilic, S., Fua, P.: Generic Deformable Implicit Mesh Models for Automated Reconstruction. In: ICCV workshop on Higher-Level Knowledge in 3D Modelling and Motion Analysis (2003)Google Scholar
  10. 10.
    Kolmogorov, V., Zabih, R.: Multi-camera Scene Reconstruction via Graph Cuts. In: Tistarelli, M., Bigun, J., Jain, A.K. (eds.) ECCV 2002. LNCS, vol. 2359, pp. 82–96. Springer, Heidelberg (2002)Google Scholar
  11. 11.
    Kutulakos, K., Seitz, S.: A Theory of Shape by Space Carving. International Journal of Computer Vision 38, 199–218 (2000)zbMATHCrossRefGoogle Scholar
  12. 12.
    Liu, Z., Zhang, Z., Jacobs, C., Cohen, M.: Rapid Modeling of Animated Faces from Video. In: International Conference on Visual Computing, pp. 58–67 (2005)Google Scholar
  13. 13.
    Magnenat-Thalmann, N., Primeau, E., Thalmann, D.: Abstract Muscle Action Procedures for Human Face Animation. The Visual Computer 3 (1987)Google Scholar
  14. 14.
    Park, S., Park, M., Kang, M.: Super-Resolution Image Reconstruction: A Technical Overview. In: IEEE Signal Processing Magazine, pp. 21–36 (2003)Google Scholar
  15. 15.
    Veksler, O.: Stereo Correspondence by Dynamic Programming on a Tree. In: Computer Vision and Pattern Recognition (2005)Google Scholar
  16. 16.
    Wang, C.L.Y., Forsey, D.R.: Langwidere: A New Facial Animation System. In: Computer Animation, pp. 59–68 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Charlotte Ghys
    • 1
    • 2
  • Nikos Paragios
    • 1
  • Bénédicte Bascle
    • 2
  1. 1.MAS – Ecole Centrale ParisChatenay-MalabryFrance
  2. 2.Orange – France Telecom R&DLannionFrance

Personalised recommendations