Procedural Image Processing for Visualization

  • Xiaoru Yuan
  • Baoquan Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4291)


We present a novel Procedural Image Processing (PIP) method and demonstrate its applications in visualization. PIP modulates the sampling positions of a conventional image processing kernel (e.g. edge detection filter) through a procedural perturbation function. When properly designed, PIP can produce a variety of styles for edge depiction, varying on width, solidity, and pattern, etc. In addition to producing artistic stylization, in this paper we demonstrate that PIP can be employed to achieve various visualization tasks, such as contour enhancement, focus+context visualization, importance driven visualization and uncertainty visualization.

PIP produces unique effects that often either cannot be easily achieved through conventional filters or would require multiple pass filtering. PIP perturbation functions are either defined by analytical expressions or encoded in pre-generated images. We leverage the programmable fragment shader of the current graphics hardware for achieving the operations in real-time.


Volume Rendering Perturbation Function Volume Visualization Procedural Image Processing IEEE Visualization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Saito, T., Takahashi, T.: Comprehensible rendering of 3-D shapes. In: Proceedings of SIGGRAPH 1990, vol. 24, pp. 197–206 (1990)Google Scholar
  2. 2.
    Yuan, X., Chen, B.: Illustrating surfaces in volume. In: Proceedings of Joint IEEE/EG Symposium on Visualization (VisSym 2004), pp. 9–16. The Eurographics Association (2004)Google Scholar
  3. 3.
    Nvidia: Nv_fragment_program. NVIDIA OpenGL Extension Specifications for the CineFX Architecture (NV30) (2003)Google Scholar
  4. 4.
    Levoy, M.: Display of surfaces from volume data. IEEE Computer Graphics and Application 8, 29–37 (1988)CrossRefGoogle Scholar
  5. 5.
    Ebert, D., Rheingans, P.: Volume illustration: Non-photorealistic rendering of volume models. In: Proceedings of IEEE Visualization 2000, pp. 195–202 (2000)Google Scholar
  6. 6.
    Kindlmann, G., Durkin, J.W.: Semi-automatic generation of transfer functions for direct volume rendering. In: Proceedings of IEEE 1998 Symposium on Volume Visualization, pp. 79–86 (1998)Google Scholar
  7. 7.
    Kniss, J., Kindlmann, G., Hansen, C.: Interactive volume rendering using multi-dimensional transfer functions and direct manipulation widgets. In: Proceedings of IEEE Visualization 2001, pp. 255–262 (2001)Google Scholar
  8. 8.
    Hertzmann, A.: Introduction to 3d non-photorealistic rendering:silhouettes and outlines. In: ACM SIGGRAPH 1999 Course Notes (Non-Photorealistic Rendering) (1999)Google Scholar
  9. 9.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of the 1998 IEEE International Conference on Computer Vision, pp. 836–846 (1998)Google Scholar
  10. 10.
    Ostromoukhov, V., Hersch, R.D.: Artistic screening. In: Proceedings of SIGGRAPH 1995, pp. 219–228. ACM Press, New York (1995)CrossRefGoogle Scholar
  11. 11.
    Hauser, H., Mroz, L., Bischi, G.I., Gröller, M.E.: Two-level volume rendering. IEEE Transactions on Visualization and Computer Graphics 7, 242–252 (2001)CrossRefGoogle Scholar
  12. 12.
    Zhou, J., Hinz, M., Tönnies, K.D.: Focal region-guided feature-based volume rendering. In: Proceedings of First International Symposium on 3D Data Processing Visualization and Transmission, pp. 87–90 (2002)Google Scholar
  13. 13.
    Grigoryan, G., Rheingans, P.: Probabilistic surfaces: Point based primitives to show surface uncertainty. In: Proceedings of IEEE Visualization 2002, pp. 147–154 (2002)Google Scholar
  14. 14.
    Johnson, C.R., Sanderson, A.R.: A next step: Visualizing errors and uncertainty. IEEE Computer Graphics and Application 23, 6–10 (2003)CrossRefGoogle Scholar
  15. 15.
    Mark, W.R., Glanville, R.S., Akeley, K., Kilgard, M.J.: Cg: a system for programming graphics hardware in a C-like language. ACM Transactions on Graphics (TOG) 22, 896–907 (2003)CrossRefGoogle Scholar
  16. 16.
    Van Gelder, A., Kim, K.: Direct volume rendering with shading via three-dimensional textures. In: Proceedings of the 1996 Symposium on Volume visualization, pp. 23–30 (1996)Google Scholar
  17. 17.
    Luft, T., Colditz, C., Deussen, O.: Image enhancement by unsharp masking the depth buffer. ACM Transactions on Graphics 25, 1206–1213 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Xiaoru Yuan
    • 1
  • Baoquan Chen
    • 1
  1. 1.Department of Computer Science and EngineeringUniversity of Minnesota at Twin CitiesUSA

Personalised recommendations