Advertisement

Polyhedrization of Discrete Convex Volumes

  • Valentin E. Brimkov
  • Reneta Barneva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4291)

Abstract

In recent years the problem of obtaining a reversible discrete surface polyhedrization (DSP) is attracting an increasing interest within the discrete geometry community. In this paper we propose the first algorithm for obtaining a reversible polyhedrization with a guaranteed performance, i.e., together with a bound on the ratio of the number of facets of the obtained polyhedron and one with a minimal number of facets. The algorithm applies to the case of a convex DSP when a discrete surface M is determined by a convex body in ℝ3. The performance estimation is based on a new lower bound (in terms of the diameter of M) on the number of 2-facets of an optimal polyhedrization. That bound easily extends to an arbitrary dimension n. We also discuss on approaches for solving the general 3D DSP.

Keywords

discrete geometry reversible polyhedrization polyhedron decomposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andres, E., Acharya, R., Sibata, C.: Discrete analytical hyperplanes. Graphical Models and Image Processing 59, 302–309 (1997)CrossRefGoogle Scholar
  2. 2.
    Bárány, I., Larman, D.G.: The convex hull of the integer points in a large ball. Math. Ann. 312, 167–181 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Barneva, R.P., Brimkov, V.E., Nehlig, P.: Thin discrete triangular meshes. Theoretical Computer Science 246(1-2), 73–105 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Brimkov, V.E.: Discrete volume polyhedrization is strongly NP-hard, CITR-TR-179, Centre for Image Technology and Robotics, University of Auckland, New Zealand (March 2006), http://citr.auckland.ac.nz/techreports/show.php?id=179
  5. 5.
    Brimkov, V.E., Andres, E., Barneva, R.P.: Object discretizations in higher dimensions. Pattern Recognition Letters 23, 623–636 (2002)zbMATHCrossRefGoogle Scholar
  6. 6.
    Brimkov, V.E., Coeurjolly, D., Klette, R.: Digital Planarity - A Review, CITR-TR 142 (2004)Google Scholar
  7. 7.
    Brimkov, V.E., Klette, R.: Curves, hypersurfaces, and good pairs of adjacency relations. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 270–284. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Chirkov, A.Y.: On the relation of upper bounds on the number of vertices of the convex hull of the integer points of a polyhedron with its metric characteristics (in Russian). In: Alekseev, V.E., et al. (eds.) Proc. 2nd Internat. Conf. “Mathematical Algorithms, pp. 169–174. N. Novgorod, Nizhegorod University Press (1997)Google Scholar
  9. 9.
    De Vieilleville, F., Lachaud, J.-O., Feschet, F.: Maximal digital straight segments and convergence of discrete geometric estimators. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Dielissen, V.J., Kaldewaij, A.: Rectangular partition is polynomial in two dimensions but NP-complete in three. Information Processing Letters 38, 1–6 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hershberger, J.E., Snoeyink, J.S.: Erased arrangements of lines and convex decompositions of polyhedra. Computational Geometry: Theory and Applications 9, 129–143 (1998)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Kaufman, A., Cohen, D., Yagel, R.: Volume graphics. IEEE Computer 26(7), 51–64 (1993)Google Scholar
  13. 13.
    Kenmochi, Y., Imiya, A., Ezquerra, N.F.: Polyhedra generation from lattice points. In: Miguet, S., Ubéda, S., Montanvert, A. (eds.) DGCI 1996. LNCS, vol. 1176, pp. 127–138. Springer, Heidelberg (1996)Google Scholar
  14. 14.
    Klette, R.A.R.: Digital Geometry - Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)zbMATHGoogle Scholar
  15. 15.
    Lingas, A.: The power of non-rectilinear holes. In: Nielsen, M., Schmidt, E.M. (eds.) ICALP 1982. LNCS, vol. 140, pp. 369–383. Springer, Heidelberg (1982)CrossRefGoogle Scholar
  16. 16.
    Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3d surface construction algorithm. Computer Graphics 21(4), 163–169 (1987)CrossRefGoogle Scholar
  17. 17.
    Papadimitriou, C., Steiglitz, K.: Combinatorial Optimization. Prentice-Hall, New Jersey (1982)zbMATHGoogle Scholar
  18. 18.
    Preparata, F., Shamos, M.I.: Computational Geometry: An Introduction. Springer, New York (1985)Google Scholar
  19. 19.
    Sivignon, I., Dupont, F., Chassery, J.-M.: Decomposition of three-dimensional discrete objects surface into discrete plane pieces. Algorithmica 38, 25–43 (2004)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Valentin E. Brimkov
    • 1
  • Reneta Barneva
    • 2
  1. 1.Mathematics DepartmentSUNY Buffalo State CollegeBuffaloUSA
  2. 2.Department of Computer ScienceSUNY FredoniaUSA

Personalised recommendations