Listing Chordal Graphs and Interval Graphs

  • Masashi Kiyomi
  • Shuji Kijima
  • Takeaki Uno
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4271)


We propose three algorithms for enumeration problems; given a graph G, to find every chordal supergraph (in K n ) of G, to find every interval supergraph (in K n ) of G, and to find every interval subgraph of G in K n . The algorithms are based on the reverse search method. A graph is chordal if and only if it has no induced chordless cycle of length more than three. A graph is an interval graph if and only if it has an interval representation. To the best of our knowledge, ours are the first results about the enumeration problems to list every interval subgraph of the input graph and to list every chordal/interval supergraph of the input graph in polynomial time. The time complexities of the first algorithm is O((n+m)2) for each output graph, and those for the rest two algorithms are O(n 3) for each output graph, where m is the number of edges of input graph G. We also show that a straight-forward depth-first search type algorithm is not appropriate for these problems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Applied Mathematics 65, 21–46 (1996)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Beeri, C., Fagin, R., Maier, D., Yanakakis, M.: On the desirability of acyclic database schemes. Journal of the ACM 30, 479–513 (1983)MATHCrossRefGoogle Scholar
  3. 3.
    Blair, J.R.S., Peyton, B.: An introduction to chordal graphs and clique trees. Graph Theory and Sparse Matrix Computation IMA56, 1–29 (1993)MathSciNetGoogle Scholar
  4. 4.
    Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ tree algorithms. Journal of Computing and System Sciences 13, 335–379 (1976)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Chandran, L.S., Ibarra, L., Ruskey, F., Sawada, J.: Fast generation of all perfect elimination orderings of a chordal graph. Theoretical Computer Science 307, 303–317 (2003)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Corneil, D.G., Olariu, S., Stewart, L.: The ultimate interval graph recognition algorithm? In: Proceedings of 9th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 175–180. ACM, New York (1998)Google Scholar
  7. 7.
    Dirac, G.A.: On rigid circuit graphs, Abhandl. Math. Seminar Univ. Hamburg 25, 71–76 (1961)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Golumbic, M.C.: Algorithmic graph theory and perfect graphs. Academic Press, New York (1980)MATHGoogle Scholar
  9. 9.
    Golumbic, M.C., Kaplan, H., Shamir, R.: Graph sandwich problems. Journal of Algorithms 19, 449–473 (1995)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kiyomi, M., Uno, T.: Generating chordal graphs included in given graphs. IEICE Transactions on Information and Systems E89-D, 763–770 (2006)CrossRefGoogle Scholar
  11. 11.
    Leckerkerker, C.G., Boland, J.C.: Representation of a finite graph by a set of intervals on the real line. Fund. Math. 51, 45–64 (1962)MathSciNetGoogle Scholar
  12. 12.
    Makino, K., Uno, T.: New algorithms for enumerating all maximal cliques. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 260–272. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Nakano, S.: Enumerating floorplans with n rooms. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 107–115. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Nakano, S.: Efficient generation of triconnected plane triangulations. Computational Geometry Theory and Applications 27(2), 109–122 (2004)MATHMathSciNetGoogle Scholar
  15. 15.
    Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM Journal on Computing 5, 266–283 (1976)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Whittaker, J.: Graphical models in applied multivariate statistics. Wiley, New York (1990)MATHGoogle Scholar
  17. 17.
    Wormald, N.C.: Counting labelled chordal graphs. Graphs and Combinatorics 1, 193–200 (1985)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Masashi Kiyomi
    • 1
  • Shuji Kijima
    • 2
  • Takeaki Uno
    • 1
  1. 1.National Institute of InformaticsTokyoJapan
  2. 2.Department of Mathematical Informatics, Graduate School of Information Science and TechnologyThe University of TokyoTokyoJapan

Personalised recommendations