A Fixed-Parameter Algorithm for the Minimum Weight Triangulation Problem Based on Small Graph Separators

  • Christian Knauer
  • Andreas Spillner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4271)

Abstract

We present a fixed-parameter algorithm which computes for a set P of n points in the plane in \(O(2^{c \sqrt{k} \log k} \cdot k \sqrt{k} n^3)\) time a minimum weight triangulation. The parameter k is the number of points in P that lie in the interior of the convex hull of P and \(c = (2 + \sqrt{2})/(\sqrt{3} -- \sqrt{2}) < 11\).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ajtai, M., Chvátal, V., Newborn, M., Szemerédi, E.: Crossing-free subgraphs. Annals of Discrete Mathematics 12, 9–12 (1982)MATHGoogle Scholar
  2. 2.
    Alber, J., Fernau, H., Niedermeier, R.: Graph separators: a parameterized view. Journal of Computer and System Sciences 67, 808–832 (2003)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Deineko, V.G., Hoffmann, M., Okamoto, Y., Woeginger, G.J.: The traveling salesman problem with few inner points. Operations Research Letters 34(1), 106–110 (2006)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Dickerson, M.T., McElfresh, S.A., Montague, M.H.: New algorithms and empirical findings on minimum weight triangulation heuristics. In: Proc. Symposium on Computational Geometry, pp. 238–247. ACM Press, New York (1995)Google Scholar
  5. 5.
    Djidjev, H.N., Venkatesan, S.M.: Reduced constants for simple cycle graph separation. Acta Informatica 34, 231–243 (1997)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)Google Scholar
  7. 7.
    Grantson, M.: Fixed-parameter algorithms and other results for optimal partitions. Licentiate Thesis, Lund University, Sweden (2004)Google Scholar
  8. 8.
    Grantson, M., Borgelt, C., Levcopoulos, C.: A fixed parameter algorithm for minimum weight triangulation: Analysis and experiments. Technical Report LU-CS-TR:2005-234, Lund University, Sweden (2005)Google Scholar
  9. 9.
    Grantson, M., Borgelt, C., Levcopoulos, C.: Minimum weight triangulation by cutting out triangles. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 984–994. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Grantson, M., Levcopoulos, C.: A fixed-parameter algorithm for the minimum number convex partition problem. In: Akiyama, J., Kano, M., Tan, X. (eds.) JCDCG 2004. LNCS, vol. 3742, pp. 83–94. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Hoffmann, M., Okamoto, Y.: The minimum weight triangulation problem with few inner points. Computational Geometry 34(3), 149–158 (2006)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hwang, R.Z., Chang, R.C., Lee, R.C.T.: The searching over separators strategy to solve some NP-hard problems in subexponential time. Algorithmica 9, 398–423 (1993)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kyoda, Y., Imai, K., Takeuchi, F., Tajima, A.: A branch-and-cut approach for minimum weight triangulation. In: Leong, H.-V., Jain, S., Imai, H. (eds.) ISAAC 1997. LNCS, vol. 1350, pp. 384–393. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  14. 14.
    Levcopoulos, C., Krznaric, D.: Quasi-greedy triangulations approximating the minimum weight triangulation. In: Proc. Symposium on Discrete Algorithms, pp. 392–401. ACM Press, New York (1996)Google Scholar
  15. 15.
    Lingas, A.: Subexponential-time algorithms for minimum weight triangulation and related problems. In: Proc. Canadian Conference on Computational Geometry (1998)Google Scholar
  16. 16.
    Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM Journal on Applied Mathematics 36, 177–189 (1979)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM Journal on Computing 9, 615–627 (1980)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Miller, G.L.: Finding small simple cycle separators for 2-connected planar graphs. Journal of Computer and System Sciences 32, 265–279 (1986)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Mulzer, W., Rote, G.: Minimum weight triangulation is NP-hard. In: Proc. Symposium on Computational Geometry, pp. 1–10. ACM Press, New York (2006)Google Scholar
  20. 20.
    Plaisted, D.A., Hong, J.: A heuristic triangulation algorithm. Journal of Algorithms 8, 405–437 (1987)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Remy, J., Steger, A.: A quasi-polynomial time approximation scheme for minimum weight triangulation. In: Proc. Symposium on Theory of Computing, pp. 316–325. ACM Press, New York (2006)Google Scholar
  22. 22.
    Sharir, M., Welzl, E.: On the number of crossing-free matchings (cycles, and partitions). In: Proc. Symposium on Discrete Algorithms, pp. 860–869. ACM Press, New York (2006)CrossRefGoogle Scholar
  23. 23.
    Spillner, A.: A faster algorithm for the minimum weight triangulation problem with few inner points. In: Proc. Algorithms and Complexity in Durham Workshop, pp. 135–146. KCL Publications (2005)Google Scholar
  24. 24.
    Spillner, A.: Optimal convex partitions of point sets with few inner points. In: Proc. Canadian Conference on Computational Geometry, pp. 34–37 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Christian Knauer
    • 1
  • Andreas Spillner
    • 2
  1. 1.Institute of Computer ScienceFreie Universität Berlin 
  2. 2.Institute of Computer ScienceFriedrich-Schiller-Universität Jena 

Personalised recommendations