Certifying Algorithms for Recognizing Proper Circular-Arc Graphs and Unit Circular-Arc Graphs

  • Haim Kaplan
  • Yahav Nussbaum
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4271)


We give two new algorithms for recognizing proper circular-arc graphs and unit circular-arc graphs. The algorithms either provide a model for the input graph, or a certificate that proves that such a model does not exist and can be authenticated in O(n) time.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Deng, X., Hell, P., Huang, J.: Linear-time representation algorithms for proper circular-arc graphs and proper interval graphs. SIAM J. Comput. 25(2), 390–403 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Durán, G., Gravano, A., McConnell, R.M., Spinrad, J.P., Tucker, A.: Polynomial time recognition of unit circular-arc graphs. J. Algorithms 58(1), 67–78 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, London (1980)zbMATHGoogle Scholar
  4. 4.
    Hell, P., Huang, J.: Certifying LexBFS recognition algorithms for proper interval graphs and proper interval bigraphs. SIAM J. Discrete Math. 18(3), 554–570 (2004)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Hell, P., Huang, J.: Interval bigraphs and circular arc graphs. J. Graph Theory 46(4), 313–327 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Kaplan, H., Nussbaum, Y.: A simpler linear-time recognition of circular-arc graphs. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 41–52. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Kratsch, D., McConnell, R.M., Mehlhorn, K., Spinrad, J.P.: Certifying algorithms for recognizing interval graphs and permutation graphs. SIAM J. Comput. 36(2), 326–353 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Lin, M.C., Szwarcfiter, J.L.: Efficient construction of unit circular-arc models. In: SODA 2006: Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm, pp. 309–315 (2006)Google Scholar
  9. 9.
    McConnell, R.M.: Linear-time recognition of circular-arc graphs. Algorithmica 37(2), 93–147 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    McConnell, R.M.: A certifying algorithm for the consecutive-ones property. In: SODA 2004: Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 768–777 (2004)Google Scholar
  11. 11.
    Mehlhorn, K., Näeher, S.: The LEDA Platform for combinatorial and geometric computing. Cambridge University Press, Cambridge (1999)Google Scholar
  12. 12.
    Meister, D.: Recognition and computation of minimal triangulations for AT-free claw-free and co-comparability graphs. Discrete Applied Math. 146(3), 193–218 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Skrien, D.J.: A relationship between triangulated graphs, comparability graphs, proper interval graphs, proper circular-arc graphs, and nested interval graphs. J. Graph Theory 6, 309–316 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Spinrad, J.P.: Efficient Graph Representations. Fields Institute Monographs, vol. 19. American Mathematical Society (2003)Google Scholar
  15. 15.
    Tarjan, R.E., Yannakakis, M.: Addendum: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 14(1), 254–255 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Tucker, A.: Matrix characterizations of circular-arc graphs. Pacific J. Math. 39(2), 535–545 (1971)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Tucker, A.: Structure theorems for some classes of circular-arc graphs. Discrete Math. 7, 167–195 (1974)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Haim Kaplan
    • 1
  • Yahav Nussbaum
    • 1
  1. 1.School of Computer ScienceTel Aviv UniversityTel AvivIsrael

Personalised recommendations