Advertisement

Computing Graph Polynomials on Graphs of Bounded Clique-Width

  • J. A. Makowsky
  • Udi Rotics
  • Ilya Averbouch
  • Benny Godlin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4271)

Abstract

We discuss the complexity of computing various graph polynomials of graphs of fixed clique-width. We show that the chromatic polynomial, the matching polynomial and the two-variable interlace polynomial of a graph G of clique-width at most k with n vertices can be computed in time O(n f( k)), where f(k) ≤3 for the inerlace polynomial, f(k) ≤2k+1 for the matching polynomial and f(k) ≤3 Open image in new window 2 k + 2 for the chromatic polynomial.

Keywords

Polynomial Time Characteristic Polynomial Chromatic Number Label Graph Graph Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ABS00]
    Arratia, R., Bollobas, B., Sorkin, G.B.: The interlace polynomial: a new graph polynomial. In: Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Mathematics, pp. 237–245 (2000)Google Scholar
  2. [ABS04a]
    Arratia, R., Bollobas, B., Sorkin, G.B.: The interlace polynomial: a new graph polynomial. Journal of Combinatorial Theory, Series B 92, 199–233 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  3. [ABS04b]
    Arratia, R., Bollobas, B., Sorkin, G.B.: A two-variable interlace polynomial. Combinatorica 24(4), 567–584 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  4. [ACP87]
    Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embedding in a k–tree. SIAM. J. Algebraic Discrete Methods 8, 277–284 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  5. [And98]
    Andrzejak, A.: An algorithm for the Tutte polynomials of graphs of bounded treewidth. Discrete Mathematics 190, 39–54 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  6. [AvdH04]
    Aigner, M., van der Holst, H.: Interlace polynomials. Linear Algebra and Applications 377, 11–30 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  7. [BCSS98]
    Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real computation. Springer, New York (1998)Google Scholar
  8. [BGMP86]
    Babić, D., Graovac, A., Mohar, B., Pisanski, T.: The matching polynomial of a polygraph. Discrete Applied Mathematics 15, 11–24 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  9. [Big93]
    Biggs, N.: Algebraic Graph Theory, 2nd edn. Cambridge University Press, Cambridge (1993)Google Scholar
  10. [Bir12]
    Birkhoff, G.D.: A determinant formula for the number of ways of coloring a map. Annals of Mathematics 14, 42–46 (1912)CrossRefMathSciNetGoogle Scholar
  11. [Bol99]
    Bollobás, B.: Modern Graph Theory. Springer, Heidelberg (1999)Google Scholar
  12. [CDS95]
    Cvetković, D.M., Doob, M., Sachs, H.: Spectra of graphs, Johann Ambrosius Barth, 3rd edn. (1995)Google Scholar
  13. [CER93]
    Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-rewriting hypergraph grammars. J. Comput. System Sci. 46, 218–270 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  14. [CMR01]
    Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity of graph enumeration problems definable in monadic second order logic. Discrete Applied Mathematics 108(1-2), 23–52 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  15. [CO00]
    Courcelle, B., Olariu, S.: Upper bounds to the clique–width of graphs. Discrete Applied Mathematics 101, 77–114 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  16. [CO06]
    Courcelle, B., Oum, S.: Vertex-minors, monadic second-order logic, and a conjecture by Seese. Journal of Combinatorial Theory, Series B, xx:xx–xx (2006)Google Scholar
  17. [CR05]
    Corneil, D.G., Rotics, U.: On the relationship between clique-width and treewidth. SIAM J. Comput. 34(4), 825–847 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  18. [DF99]
    Downey, R.G., Fellows, M.F.: Parametrized Complexity. Springer, Heidelberg (1999)Google Scholar
  19. [Die96]
    Diestel, R.: Graph Theory. In: Graduate Texts in Mathematics. Springer, Heidelberg (1996)Google Scholar
  20. [DKT05]
    Dong, F.M., Koh, K.M., Teo, K.L.: Chromatic polynomials and chromaticity of graphs. World Scientific, Singapore (2005)zbMATHCrossRefGoogle Scholar
  21. [FK03]
    Fürer, M., Kasiviswanathan, S.P.: Algorithms for counting 2-SAT solutions and colorings with applications. Electronic Colloquium on Computational Complexity 1, R33 (2003)Google Scholar
  22. [FMR06]
    Fischer, E., Makowsky, J.A., Ravve, E.V.: Counting truth assignments of formulas of bounded tree width and clique-width. Discrete Applied Mathematics, xx:xx–xx (2006)Google Scholar
  23. [FRRS05]
    Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Proving NP-hardness for clique width. In: ECCC, xx:xx–yy (2005)Google Scholar
  24. [GHN05]
    Giménez, O., Hliněný, P., Noy, M.: Computing the Tutte polynomial on graphs of bounded clique-width. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 59–68. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. [GHN06]
    Giménez, O., Hlinĕný, P., Noy, M.: Computing the Tutte polynomial on graphs of bounded clique-width. XXX, xx:xx–yy (2006)Google Scholar
  26. [GR01]
    Godsil, C., Royle, G.: Algebraic Graph Theory. In: Graduate Texts in Mathematics. Springer, Heidelberg (2001)Google Scholar
  27. [JVW90]
    Jaeger, F., Vertigan, D.L., Welsh, D.J.A.: On the computational complexity of the Jones and Tutte polynomials. Math. Proc. Camb. Phil. Soc. 108, 35–53 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  28. [KR03]
    Kobler, D., Rotics, U.: Edge dominating set and colorings on graphs with fixed clique-width. Discrete Applied Mathematics 126, 197–221 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  29. [LP86]
    Lovasz, L., Plummer, M.: Matching Theory. North-Holland, Amsterdam (1986)zbMATHGoogle Scholar
  30. [Mak04]
    Makowsky, J.A.: Algorithmic uses of the Feferman-Vaught theorem. Annals of Pure and Applied Logic 126, 1–3 (2004)CrossRefMathSciNetGoogle Scholar
  31. [Nob98]
    Noble, S.D.: Evaluating the Tutte polynomial for graphs of bounded tree-width. Combinatorics, Probability and Computing 7, 307–321 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  32. [OS05]
    Oum, S., Seymour, P.: Approximating clique-width and branch-width. Journal of Combinatorial Theory, Ser. B, xx(x):xx–yy (2005)Google Scholar
  33. [OW92]
    Oxley, J.G., Welsh, D.J.A.: Tutte polynomials computable in polynomial time. Discrete Mathematics 109, 185–192 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  34. [Pap94]
    Papadimitriou, C.: Computational Complexity. Addison Wesley, Reading (1994)zbMATHGoogle Scholar
  35. [Sta73]
    Stanley, R.P.: Acyclic orientations of graphs. Discrete Mathematics 5, 171–178 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  36. [Tri92]
    Trinajstić, N.: Chemical graph theory, 2nd edn. CRC Press, Boca Raton (1992)Google Scholar
  37. [Val79]
    Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM Journal on Computing 8(3), 410–421 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  38. [VW92]
    Vertigan, D.L., Welsh, D.J.A.: The computational complexity of the Tutte plane: The bipartite case. Combinatorics, Probability, and Computing 1, 181–187 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  39. [Wel93]
    Welsh, D.J.A.: Complexity: Knots, Colourings and Counting. London Mathematical Society Lecture Notes Series, vol. 186. Cambridge University Press, Cambridge (1993)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • J. A. Makowsky
    • 1
  • Udi Rotics
    • 2
  • Ilya Averbouch
    • 1
  • Benny Godlin
    • 1
    • 3
  1. 1.Department of Computer ScienceTechnion–Israel Institute of TechnologyHaifaIsrael
  2. 2.School of Computer Science and MathematicsNetanya Academic CollegeNetanyaIsrael
  3. 3.IBM Research and Development LaboratoryHaifaIsrael

Personalised recommendations