Advertisement

An Implicit Representation of Chordal Comparabilty Graphs in Linear-Time

  • Andrew R. Curtis
  • Clemente Izurieta
  • Benson Joeris
  • Scott Lundberg
  • Ross M. McConnell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4271)

Abstract

Ma and Spinrad have shown that every transitive orientation of a chordal comparability graph is the intersection of four linear orders. That is, chordal comparability graphs are comparability graphs of posets of dimension four. Among other uses, this gives an implicit representation of a chordal comparability graph using O(n) integers so that, given two vertices, it can be determined in O(1) time whether they are adjacent, no matter how dense the graph is. We give a linear-time algorithm for finding the four linear orders, improving on their bound of O(n 2).

Keywords

Partial Order Linear Order Implicit Representation Interval Graph Comparability Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [CLRS01]
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. McGraw-Hill, Boston (2001)zbMATHGoogle Scholar
  2. [DM41]
    Duschnik, B., Miller, E.W.: Partially ordered sets. Amer. J. Math. 63, 600–610 (1941)CrossRefMathSciNetGoogle Scholar
  3. [Gol80]
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)zbMATHGoogle Scholar
  4. [GT85]
    Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint set union. Journal of Computer and System Sciences 30, 209–221 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  5. [KTQ92]
    Kierstead, H., Trotter, W.T., Qin, J.: The dimension of cycle-free orders. Order 9, 103–110 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  6. [MS91]
    Ma, T., Spinrad, J.P.: Cycle-free partial orders and chordal comparability graphs. Order 8, 49–61 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  7. [MS99]
    McConnell, R.M., Spinrad, J.P.: Modular decomposition and transitive orientation. Discrete Mathematics 201(1-3), 189–241 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  8. [RTL76]
    Rose, D., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5, 266–283 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  9. [Spi03]
    Spinrad, J.: Efficient Graph Representations. American Mathematical Society, Providence (2003)zbMATHGoogle Scholar
  10. [Tar83]
    Tarjan, R.E.: Data structures and network algorithms. Society for Industrial and Applied Math., Philadelphia (1983)Google Scholar
  11. [Yan82]
    Yannakakis, M.: The complexity of the partial order dimension problem. SIAM J. Algebraic and Discrete Methods 3, 303–322 (1982)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Andrew R. Curtis
    • 1
  • Clemente Izurieta
    • 1
  • Benson Joeris
    • 1
  • Scott Lundberg
    • 1
  • Ross M. McConnell
    • 1
  1. 1.Department of Computer ScienceColorado State UniversityFort CollinsU.S.A

Personalised recommendations