Vertex Coloring of Comparability+ke and –ke Graphs

  • Yasuhiko Takenaga
  • Kenichi Higashide
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4271)


\(\mathcal{F}+k\)e and \(\mathcal{F}-k\)e graphs are classes of graphs close to graphs in a graph class \(\mathcal{F}\). They are the classes of graphs obtained by adding or deleting at most k edges from a graph in \(\mathcal{F}\). In this paper, we consider vertex coloring of comparability+ke and comparability–ke graphs. We show that for comparability+ke graphs, vertex coloring is solved in polynomial time for k=1 and NP-complete for k ≥2. We also show that vertex coloring of comparability–1e graphs is solved in polynomial time.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cai, L.: Parameterized Complexity of Vertex Colouring. Discrete Applied Mathematics 127(3), 415–429 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Downer, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1997)Google Scholar
  3. 3.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. In: Annals of Discrete Mathematics, 2nd edn., vol. 57. Elsevier, Amsterdam (2004)Google Scholar
  4. 4.
    Grotschel, M., Lovasz, L., Schrijver, A.: Polynomial Algorithms for Perfect Graphs. Annals of Discrete Mathematics 21, 325–356 (1984)MathSciNetGoogle Scholar
  5. 5.
    Guo, J., Hüffner, F., Niedermeier, R.: A Structural View on Parameterizing Problems: Distance from Triviality. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 162–173. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Marx, D.: Parameterized Coloring Problems on Chordal Graphs. Theoretical Computer Science 351(3), 407–424 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    McConnell, R.M., Spinrad, J.P.: Modular Decomposition and Transitive Orientation. Discrete Math. 201, 189–241 (1999)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yasuhiko Takenaga
    • 1
  • Kenichi Higashide
    • 1
  1. 1.The University of Electro-CommunicationsTokyoJapan

Personalised recommendations