On a Local-Step Cut-Elimination Procedure for the Intuitionistic Sequent Calculus

  • Kentaro Kikuchi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4246)

Abstract

In this paper we investigate, for intuitionistic implicational logic, the relationship between normalization in natural deduction and cut-elimination in a standard sequent calculus. First we identify a subset of proofs in the sequent calculus that correspond to proofs in natural deduction. Then we define a reduction relation on those proofs that exactly corresponds to normalization in natural deduction. The reduction relation is simulated soundly and completely by a cut-elimination procedure which consists of local proof transformations. It follows that the sequent calculus with our cut-elimination procedure is a proper extension that is conservative over natural deduction with normalization.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bloo, R., Geuvers, H.: Explicit substitution: On the edge of strong normalization. Theoretical Computer Science 211, 375–395 (1999)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Dyckhoff, R., Pinto, L.: Cut-elimination and a permutation-free sequent calculus for intuitionistic logic. Studia Logica 60, 107–118 (1998)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Dyckhoff, R., Urban, C.: Strong normalization of Herbelin’s explicit substitution calculus with substitution propagation. Journal of Logic and Computation 13, 689–706 (2003)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Espírito Santo, J.: Revisiting the correspondence between cut elimination and normalisation. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 600–611. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Espírito Santo, J.: An isomorphism between a fragment of sequent calculus and an extension of natural deduction. In: Baaz, M., Voronkov, A. (eds.) LPAR 2002. LNCS, vol. 2514, pp. 352–366. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Gentzen, G.: Untersuchungen über das logische Schliessen. Mathematische Zeitschrift 39, 176–210, 405–431 (1935); English translation in [11], pp. 68–131Google Scholar
  7. 7.
    Herbelin, H.: A λ-calculus structure isomorphic to Gentzen-style sequent calculus structure. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 61–75. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  8. 8.
    Howard, W.A.: The formulae-as-types notion of construction. In: Seldin, J.P., Hindley, J.R. (eds.) To H. B. Curry: Essays on Combinatory Logic, Lambda-Calculus and Formalism, pp. 479–490. Academic Press, London (1980)Google Scholar
  9. 9.
    Pfenning, F.: Structural cut elimination: I. intuitionistic and classical logic. Information and Computation 157, 84–141 (2000)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Prawitz, D.: Natural Deduction, A Proof-Theoretical Study. Almquist and Wiksell (1965)Google Scholar
  11. 11.
    Szabo, M.E. (ed.): The Collected Papers of Gerhard Gentzen. North-Holland (1969)Google Scholar
  12. 12.
    Urban, C.: Classical Logic and Computation. PhD thesis, University of Cambridge (2000)Google Scholar
  13. 13.
    Urban, C., Bierman, G.M.: Strong normalisation of cut-elimination in classical logic. Fundamenta Informaticae 45, 123–155 (2001)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Kentaro Kikuchi
    • 1
  1. 1.RIECTohoku UniversitySendaiJapan

Personalised recommendations