Delayed Theory Combination vs. Nelson-Oppen for Satisfiability Modulo Theories: A Comparative Analysis

  • Roberto Bruttomesso
  • Alessandro Cimatti
  • Anders Franzén
  • Alberto Griggio
  • Roberto Sebastiani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4246)

Abstract

Many approaches for Satisfiability Modulo Theory (SMT\({\mathcal({T})})\) rely on the integration between a SAT solver and a decision procedure for sets of literals in the background theory \({\mathcal{T}} ({\mathcal{T}}-solver\)). When \({\mathcal{T}}\) is the combination \({{\mathcal{T}}_1\cup{\mathcal{T}}_2}\) of two simpler theories, the approach is typically handled by means of Nelson-Oppen’s (NO) theory combination schema in which two specific \({\mathcal{T}}\)-solver deduce and exchange (disjunctions of) interface equalities.

In recent papers we have proposed a new approach to \(({{\mathcal{T}}_1\cup{\mathcal{T}}_2})\), called Delayed Theory Combination (Dtc). Here part or all the (possibly very expensive) task of deducing interface equalities is played by the SAT solver itself, at the potential cost of an enlargement of the boolean search space. In principle this enlargement could be up to exponential in the number of interface equalities generated.

In this paper we show that this estimate was too pessimistic. We present a comparative analysis of Dtc vs. NO for SMT\(({{\mathcal{T}}_1\cup{\mathcal{T}}_2})\), which shows that, using state-of-the-art SAT-solving techniques, the amount of boolean branches performed by Dtc can be upper bounded by the number of deductions and boolean branches performed by NO on the same problem. We prove the result for different deduction capabilities of the \({\mathcal({T}-solver)}\) and for both convex and non-convex theories.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armando, A., Castellini, C., Giunchiglia, E., Maratea, M.: A SAT-Based Decision Procedure for the Boolean Combination of Difference Constraints. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 16–29. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Barrett, C.W., Berezin, S.: CVC Lite: A New Implementation of the Cooperating Validity Checker Category B. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 515–518. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T.A., Ranise, S., van Rossum, P., Sebastiani, R.: Efficient Satisfiability Modulo Theories via Delayed Theory Combination. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 335–349. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T.A., van Rossum, P., Schulz, S., Sebastiani, R.: An Incremental and Layered Procedure for the Satisfiability of Linear Arithmetic Logic. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 317–333. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., van Rossum, P., Schulz, S., Sebastiani, R.: MathSAT: A Tight Integration of SAT and Mathematical Decision Procedure. Journal of Automated Reasoning (to appear, 2005)Google Scholar
  6. 6.
    Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., van Rossum, P., Ranise, S., Sebastiani, R.: Efficient Theory Combination via Boolean Search. Information and Computation (to appear, 2005)Google Scholar
  7. 7.
    Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: Delayed Theory Combination vs. Nelson-Oppen for Satisfiability Modulo Theories: a Comparative Analysis. Technical Report DIT-06-032, DIT, University of Trento (2006), Available at: http://dit.unitn.it/~rseba/papers/lpar06_dtc_extended.pdf
  8. 8.
    Cotton, S., Asarin, E., Maler, O., Niebert, P.: Some Progress in Satisfiability Checking for Difference Logic. In: Proc. FORMATS-FTRTFT 2004 (2004)Google Scholar
  9. 9.
    Filliâtre, J.-C., Owre, S., Rueß, H., Shankar, N.: ICS: Integrated Canonizer and Solver. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 246–249. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): Fast decision procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 175–188. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Nelson, G., Oppen, D.C.: Simplification by Cooperating Decision Procedures. ACM Trans. on Programming Languages and Systems 1(2), 245–257 (1979)MATHCrossRefGoogle Scholar
  12. 12.
    Nieuwenhuis, R., Oliveras, A.: Congruence Closure with Integer Offsets. In: Y. Vardi, M., Voronkov, A. (eds.) LPAR 2003. LNCS, vol. 2850, pp. 77–89. Springer, Heidelberg (2003)Google Scholar
  13. 13.
    Shostak, R.E.: Deciding Combinations of Theories. Journal of the ACM 31, 1–12 (1984)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Zhang, L., Madigan, C.F., Moskewicz, M.H., Malik, S.: Efficient conflict driven learning in a boolean satisfiability solver. In: Proc. ICCAD 2001. IEEE Press, Los Alamitos (2001)Google Scholar
  15. 15.
    Zhang, L., Malik, S.: The quest for efficient boolean satisfiability solvers. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 17–36. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Roberto Bruttomesso
    • 1
  • Alessandro Cimatti
    • 1
  • Anders Franzén
    • 1
    • 2
  • Alberto Griggio
    • 2
  • Roberto Sebastiani
    • 2
  1. 1.ITC-IRSTPovo, TrentoItaly
  2. 2.DITUniversità di TrentoItaly

Personalised recommendations