Abstract

The calculus of structures is a proof theoretical formalism which generalizes the sequent calculus with the feature of deep inference: In contrast to the sequent calculus, inference rules can be applied at any depth inside a formula, bringing shorter proofs than any other formalisms supporting analytical proofs. However, deep applicability of the inference rules causes greater nondeterminism than in the sequent calculus regarding proof search. In this paper, we introduce a new technique which reduces nondeterminism without breaking proof theoretical properties and provides a more immediate access to shorter proofs. We present this technique on system BV, the smallest technically non-trivial system in the calculus of structures, extending multiplicative linear logic with the rules mix, nullary mix, and a self-dual non-commutative logical operator. Because our technique exploits a scheme common to all the systems in the calculus of structures, we argue that it generalizes to these systems for classical logic, linear logic, and modal logics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andreoli, J.-M.: Logic programming with focussing proofs in linear logic. Journal of Logic and Compututation 2(3), 297–347 (1992)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Brünnler, K.: Deep Inference and Symmetry in Classical Proofs. PhD thesis, TU Dresden (2003)Google Scholar
  3. 3.
    Brünnler, K., Tiu, A.F.: A local system for classical logic. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 347–361. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Bruscoli, P.: A purely logical account of sequentiality in proof search. In: Stuckey, P.J. (ed.) ICLP 2002. LNCS, vol. 2401, pp. 302–316. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: The Maude 2.0 system. In: Narendran, P., Rusinowitch, M. (eds.) RTA 1999. LNCS, vol. 1631, p. 240. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Guglielmi, A.: A system of interaction and structure. Technical Report WV-02-10, TU Dresden (2002); ACM Transactions on Computational Logic (accepted, 2002)Google Scholar
  7. 7.
    Guglielmi, A.: Polynomial size deep-inference proofs instead of exponential size shallow-inference proofs (2004), Available on the web at: http://cs.bath.ac.uk/ag/p/AG12.pdf
  8. 8.
    Guglielmi, A., Straßburger, L.: Non-commutativity and MELL in the calculus of structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142, pp. 54–68. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Guglielmi, A., Straßburger, L.: A non-commutative extension of MELL. In: Baaz, M., Voronkov, A. (eds.) LPAR 2002. LNCS, vol. 2514, pp. 231–246. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Kahramanoğulları, O.: Implementing system BV of the calculus of structures in Maude. In: Alonso i Alemany, L., Égré, P. (eds.) Proc. of the ESSLLI-2004 Student Session, Université Henri Poincaré, Nancy, France, pp. 117–127 (2004)Google Scholar
  11. 11.
    Kahramanoğulları, O.: System BV without the equalities for unit. In: Aykanat, C., Dayar, T., Körpeoğlu, İ. (eds.) ISCIS 2004. LNCS, vol. 3280, pp. 986–995. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Kahramanoğulları, O.: Reducing nondeterminism in the calculus of structures.Technical Report WV-06-01, TU Dresden (2006), Available at: http://www.ki.inf.tu-dresden.de/~ozan/redNondet.pdf
  13. 13.
    Kahramanoğulları, O.: System BV is NP-complete. In: de Queiroz, R., Macintyre, A., Bittencourt, G. (eds.) WoLLIC 2005, Florianapolis, Brazil. ENTCS, vol. 143, pp. 87–99. Elsevier, Amsterdam (2006)Google Scholar
  14. 14.
    Kahramanoğulları, O., Moreau, P.-E., Reilles., A.: Implementing deep inference in TOM. In: Bruscoli, P., Lamarche, F., Stewart, C. (eds.) Structures and Deduction 2005 (ICALP 2005 Workshop), pp. 158–172 (2005)Google Scholar
  15. 15.
    Miller, D.: Forum: A multiple-conclusion specification logic. Theoretical Computer Science 165, 201–232 (1996)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Moreau, P.-E., Ringeissen, C., Vittek, M.: A pattern matching compiler for multiple target languages. In: Hedin, G. (ed.) CC 2003. LNCS, vol. 2622, pp. 61–76. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Retoré, C.: Pomset logic: A non-commutative extension of classical linear logic. In: de Groote, P., Hindley, J.R. (eds.) TLCA 1997. LNCS, vol. 1210, pp. 300–318. Springer, Heidelberg (1997)Google Scholar
  18. 18.
    Stewart, C., Stouppa, P.: A systematic proof theory for several modal logics. In: Schmidt, R., Pratt-Hartmann, I., Reynolds, M., Wansing, H. (eds.) Advances in Modal Logic, vol. 5, pp. 309–333. King’s College Publications (2005)Google Scholar
  19. 19.
    Straßburger, L.: A local system for linear logic. In: Baaz, M., Voronkov, A. (eds.) LPAR 2002. LNCS, vol. 2514, pp. 388–402. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Straßburger, L.: Linear Logic and Noncommutativity in the Calculus of Structures. PhD thesis, TU Dresden (2003)Google Scholar
  21. 21.
    Straßburger, L.: System NEL is undecidable. In: de Queiroz, R., Pimentel, E., Figueiredo, L. (eds.) WoLLIC 2003. ENTCS, vol. 84. Elsevier, Amsterdam (2003)Google Scholar
  22. 22.
    Tiu, A.F.: A local system for intuitionistic logic. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS, vol. 4246, pp. 242–256. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Tiu, A.F.: A system of interaction and structure II: The need for deep inference. Logical Methods in Computer Science (to appear, 2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ozan Kahramanoğulları
    • 1
  1. 1.Department of ComputingImperial College LondonUK

Personalised recommendations