Modular Cut-Elimination: Finding Proofs or Counterexamples

  • Agata Ciabattoni
  • Kazushige Terui
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4246)

Abstract

Modular cut-elimination is a particular notion of ”cut-elimination in the presence of non-logical axioms” that is preserved under the addition of suitable rules. We introduce syntactic necessary and sufficient conditions for modular cut-elimination for standard calculi, a wide class of (possibly) multiple-conclusion sequent calculi with generalized quantifiers. We provide a ”universal” modular cut-elimination procedure that works uniformly for any standard calculus satisfying our conditions. The failure of these conditions generates counterexamples for modular cut-elimination and, in certain cases, for cut-elimination.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buss, S.: An Introduction to Proof Theory. In: Handbook of Proof Theory, pp. 1–78. Elsevier Science (1998)Google Scholar
  2. 2.
    Ciabattoni, A.: Automated Generation of Analytic Calculi for Logics with Linearity. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 503–517. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Ciabattoni, A., Terui, K.: Towards a semantic characterization of cut-elimination. Studia Logica 82(1), 95–119 (2006)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Gentzen, G.: Untersuchungen über das logische Schliessen I, II. Mathematische Zeitschrift 39, 176–210, 405–431 (1934)Google Scholar
  5. 5.
    Lopez-Escobar, E.G.K.: On the Interpolation Theorem for the Logic of Constant Domains. J. Symb. Log. 46(1), 87–88 (1981)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Miller, D., Pimentel, E.: Using Linear Logic to Reason about Sequent Systems. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 2–23. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Pfenning, F.: Structural Cut Elimination: I. Intuitionistic and Classical Logic. Inf. Comput. 157, 84–141 (2000)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Restall, G.: An Introduction to Substructural Logics. Routledge, London (1999)MATHGoogle Scholar
  9. 9.
    Schütte, K.: Beweistheorie. Springer, Heidelberg (1960)MATHGoogle Scholar
  10. 10.
    Tait, W.W.: Normal derivability in classical logic. In: The Sintax and Semantics of infinitary Languages. LNM, vol. 72, pp. 204–236 (1968)Google Scholar
  11. 11.
    Takeuti, G.: Proof Theory, 2nd edn. North-Holland, Amsterdam (1987)MATHGoogle Scholar
  12. 12.
    Terui, K.: Which Structural Rules Admit Cut Elimination? — An Algebraic Criterion. Journal of Symbolic Logic (to appear)Google Scholar
  13. 13.
    Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory, 2nd edn. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  14. 14.
    Zamanski, A., Avron, A.: Cut-Elimination and Quantification in Canonical Systems. Studia Logica 82(1), 157–176 (2006)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Zamanski, A., Avron, A.: Canonical gentzen-type calculi with (n,k)-ary quantifiers. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS, vol. 4130, pp. 251–265. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Agata Ciabattoni
    • 1
  • Kazushige Terui
    • 2
  1. 1.Institute für Diskrete Mathematik und GeometrieTU Wien 
  2. 2.National Institute of InformaticsTokyoJapan

Personalised recommendations