Advertisement

The Management and Integration of Biomedical Knowledge: Application in the Health-e-Child Project (Position Paper)

  • E. Jimenez-Ruiz
  • R. Berlanga
  • I. Sanz
  • R. McClatchey
  • R. Danger
  • D. Manset
  • J. Paraire
  • A. Rios
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4278)

Abstract

The Health-e-Child project aims to develop an integrated healthcare platform for European paediatrics. In order to achieve a comprehensive view of children’s health, a complex integration of biomedical data, information, and knowledge is necessary. Ontologies will be used to formally define this domain knowledge and will form the basis for the medical knowledge management system. This paper introduces an innovative methodology for the vertical integration of biomedical knowledge. This approach will be largely clinician-centered and will enable the definition of ontology fragments, connections between them (semantic bridges) and enriched ontology fragments (views). The strategy for the specification and capture of fragments, bridges and views is outlined with preliminary examples demonstrated in the collection of biomedical information from hospital databases, biomedical ontologies, and biomedical public databases.

Keywords

Vertical Knowledge Integration Approximate Queries Ontology Views Semantic Bridges 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Freund, J., et al.: Health-e-Child: An Integrated Biomedical Platform for Grid-Based Pediatrics. Studies in Health Technology & Informatics 120, 259–270 (2006)Google Scholar
  2. 2.
    Goble, C., et al.: Transparent Access to Multiple Bioinformatics Information Sources (TAMBIS). IBM System Journal 40(2), 532–551 (2001)CrossRefGoogle Scholar
  3. 3.
    Kohler, J., Phillipi, S., Lange, M.: SEMEDA: ontology based semantic integration of biological databases. Bioinformatics 19(18) (2003)Google Scholar
  4. 4.
    The Unified Medical Language System (UMLS) fact sheet available at the National Institutes of Health Library of Medicine, http://www.nlm.nih.gov/pubs/factsheets/umls.html
  5. 5.
    Perez-Roy, D., et al.: ONTOFUSION: Ontology-based integration of genomic and clinical databases. Computers in Biology & Medicine 36(7-8) (2006)Google Scholar
  6. 6.
    Stevens, R., Robinson, A., Goble, C.A.: myGrid: Personalised Bioinformatics on the Information Grid. Bioinformatics 19(suppl. 1), i302–i304 (2003)Google Scholar
  7. 7.
    Oliveira, I., et al.: On the Requirements of Biomedical Information Tools for Health Applications: The INFOGENMED Case Study. In: BioENG 2003, Lisbon, Portugal (2003)Google Scholar
  8. 8.
    Sanz, I., Mesiti, M., Guerrini, G., Berlanga, R.: ArHeX: An Approximate Retrieval System for Highly Heterogeneous XML Document Collections. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 1186–1189. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Sanz, I., Mesiti, M., Guerrini, G., Llavori, R.B.: Highly Heterogeneous XML Collections: How to Retrieve Precise Results? In: Larsen, H.L., Pasi, G., Ortiz-Arroyo, D., Andreasen, T., Christiansen, H. (eds.) FQAS 2006. LNCS (LNAI), vol. 4027, pp. 232–244. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Jiménez, E., Berlanga, R., Sanz, I., Aramburu, M.J., Danger, R.: OntoPathView: A Simple View Definition Language for the Collaborative Development of Ontologies. In: Artificial Intelligence Research and Development, pp. 429–436. IOS Press, Amsterdam (2005)Google Scholar
  11. 11.
    Noy, N.F.: Semantic Integration: A Survey of Ontology Based Approaches. In: ACM SIGMOD Record, Special Issue on Semantic integration (2004)Google Scholar
  12. 12.
    Bouquet, Giunchiglia, F., Van Harmelen, F., Serafini, L., Stuckenschmidt, H.: Contextualizing ontologies. Journal of Web Semantics 1(4), 325–343 (2004)Google Scholar
  13. 13.
    Cuenca-Grau, Parsia, B., Sirin, E.: Combining OWL Ontologies using E-Connections. Journal of Web Semantics 4(1), 40–59 (2005)Google Scholar
  14. 14.
    Danger, R., Berlanga, R., Ruíz-Shulcloper, J.: CRISOL: An approach for automatically populating a Semantic Web from Unstructured Text Collections. In: Galindo, F., Takizawa, M., Traunmüller, R. (eds.) DEXA 2004. LNCS, vol. 3180, pp. 243–252. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • E. Jimenez-Ruiz
    • 1
  • R. Berlanga
    • 1
  • I. Sanz
    • 1
  • R. McClatchey
    • 2
  • R. Danger
    • 1
  • D. Manset
    • 3
  • J. Paraire
    • 3
  • A. Rios
    • 3
  1. 1.University Jaume ICastellonSpain
  2. 2.CCS Research CentreUniversity of the West of England (UWE)BristolUK
  3. 3.Maat GknowledgeValenciaSpain

Personalised recommendations