Ontological Distance Measures for Information Visualisation on Conceptual Maps

  • Sylvie Ranwez
  • Vincent Ranwez
  • Jean Villerd
  • Michel Crampes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4278)


Finding the right semantic distance to be used for information research, classification or text clustering using Natural Language Processing is a problem studied in several domains of computer science. We focus on measurements that are real distances: i.e. that satisfy all the properties of a distance. This paper presents one isa -distance measurement that may be applied to taxonomies. This distance, combined with a distance based on relations other than isa, may be a step towards a real semantic distance for ontologies. After presenting the purpose of this work and the position of our approach within the literature, we formally detail our isa-distance. It is extended to other relations and used to obtain a MDS projection of a musical ontology in an industrial project. The utility of such a distance in visualization, navigation, information research and ontology engineering is underlined.


isa-distance Semantic Distance MDS Ontology Visualisation Conceptual Maps Ontology Engineering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Besançon, R.: Intégration de connaissances syntaxiques et sémantiques dans les représentations vectorielles de textes – application au calcul de similarités sémantiques dans le cadre du modèle DSIR. Thèse de sciences EPFL, n° 2508 (2001) Google Scholar
  2. 2.
    Barthémemy, J.P., Guénoche, A.: Trees and Proximity Representation. Wiley & sons, Chichester, New-York (1991)Google Scholar
  3. 3.
    Budanitsky, A., Hirst, G.: Semantic Distance in WordNet: An Experimental, Application-oriented Evaluation of Five Measures. In: Workshop on WordNet and Other Lexical Resources, in the North American Chapter of the Association for Computational Linguistics, NAACL-2000, Pittsburgh, PA (June 2001)Google Scholar
  4. 4.
    Collective of authors: WordNet. An electronic lexical database. In: Fellbaum, C. (ed.) with a preface by George Miller, p. 422. MIT Press, Cambridge (1998)Google Scholar
  5. 5.
    Cordì, V., Lombardi, P., Martelli, M., Mascardi, V.: An Ontology-Based Similarity between Sets of Concepts. In: Corradini, F., De Paoli, F., Merelli, E., Omicini, A. (eds.) Proceedings of WOA 2005, Pitagora Editrice Bologna, pp. 16–21 (2005), ISBN 88-371-1590-3Google Scholar
  6. 6.
    Crampes, M., Ranwez, S., Villerd, J., Velickovski, F., Mooney, C., Emery, A., Mille, N.: Concept Maps for Designing Adaptive Knowledge Maps. In: Tergan, S.-O., Keller, T., Burkhard, R. (eds.) Concept Maps; A Special Issue of Information Visualization, vol. 5(3). Palgrave - Macmillan, Basingstoke (2006)Google Scholar
  7. 7.
    Crampes, M., Ranwez, S., Velickovski, F., Mooney, C., Mille, N.: An integrated visual approach for music indexing and dynamic playlist composition. In: Proc. 13th Annual Multimedia Computing and Networking (MMCN 2006), San Jose, CA, US (January 18-19, 2006)Google Scholar
  8. 8.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.: Graph drawing. Algorithms for the visualisation of graphs. Prentice Hall, Upper Saddle River (1999)Google Scholar
  9. 9.
    Euzenat, J.: Représentations de connaissance: de l’approximation à la confrontation. Habilitation à diriger des recherches. Univ Grenoble 1, 116 (1999); English title : Knowledge representations : from approximation to confrontationGoogle Scholar
  10. 10.
    Hliautakis, A.: Semantic Similarity Measures in MeSH Ontology and their application to Information Retrieval on Medline. Dissertation Thesis, Technical Univ. of Crete (TUC), Dept. of Electronic and Computer Engineering, Chania, Crete, Greece (2005)Google Scholar
  11. 11.
    Jaillet, S., Teisseire, M., Dray, G., Plantié, M.: Comparing Concept-Based and Statistical Representations for Textual Categorization. In: Proceedings of 10th Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2004), pp. 91–98 (2004)Google Scholar
  12. 12.
    Jing, L., Zhou, L., Ng, M.K., Huang, J.Z.: Ontology-based Distance Measure for Text Clustering. In: Proceedings of the Fourth Workshop on Text Mining, Sixth SIAM International Conference on Data Mining, Hyatt Regency Bethesda, Maryland (2006)Google Scholar
  13. 13.
    Ranwez, S.: Composition Automatique de Documents Hypermédia Adaptatifs à partir d’Ontologies et de Requêtes Intentionnelles de l’Utilisateur, PhD thesis in computer science, Montpellier II University (2000)Google Scholar
  14. 14.
    Resnik, P.: Semantic Similarity in a Taxonomy: An Information-Based Measure and its Application to Problems of Ambiguity in Natural Language. Journal of Artificial Intelligence Research 11, 95–130 (1999)zbMATHGoogle Scholar
  15. 15.
    Roddick, J., Hornsby, K., de Vries, D.: A unifying semantic distance model for determining the similarity of attribute values. In: Proceedings of the 26th Australian Computer Science Conference (ACSC 2003), Adelaide, Australia (2003)Google Scholar
  16. 16.
    Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley, Reading (1984)zbMATHGoogle Scholar
  17. 17.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical systems. IEEE Trans. Syst. Man Cybern. SMC 11(2), 109–125 (1981)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sylvie Ranwez
    • 1
  • Vincent Ranwez
    • 2
  • Jean Villerd
    • 1
  • Michel Crampes
    • 1
  1. 1.LGI2P Research CentreNîmes cedex 1France
  2. 2.Laboratoire de Paléontologie, Phylogénie et Paléobiologie, Institut des Sciences de l’Evolution (UMR 5554 CNRS)Université Montpellier IIMONTPELLIER Cedex 05France

Personalised recommendations