Bringing Together Structured and Unstructured Sources: The OUMSUIS Approach

  • Gayo Diallo
  • Michel Simonet
  • Ana Simonet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4277)


Integration of heterogeneous sources is a means to offer the user an access to multiple information sources in a unified way through queries submitted to a global schema. We propose a semantic web-based mediator model, to provide unified access to various sources which may be both structured (database systems) and unstructured (textual medical reports, scientific publications, etc.). The mediator level is composed of the global ontology and a set of ontologies which make it possible to characterize sources (one or several ontologies by source). Unstructured sources are seen through their Semantic Document Representation obtained by a semantic characterization process. A reverse engineering process is then applied on each Semantic Document Representation schema and each structured source schema in order to provide semi-automatically a set of local ontologies. These local ontologies are articulated around the global schema following the global centric approach. A service called Terminology Server (ServO) is used to perform queries and manage the ontologies. The ontology-based query model combines databases and information retrieval techniques. We illustrate this approach with a case study in the brain disease field but it is sufficiently generic to be used in other domains.


Global Schema Domain Ontology Name Entity Recognition Mediator Level Information Retrieval Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antoniou, G., van Harmelen, F.: Web Ontology Language. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, Springer, Berlin (2004)Google Scholar
  2. 2.
    Bodenreider, O.: The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Research 32(Database issue), 267–270 (2004)CrossRefGoogle Scholar
  3. 3.
    Bowden, D.M., Martin, R.F.: Neuronames brain hierarchy. Neuroimage 2, 63–83 (1995)CrossRefGoogle Scholar
  4. 4.
    Diallo, G., Simonet, M., Simonet, A.: An Approach of Automatic Semantic Annotation of Biomedical Texts. In: Ali, M., Dapoigny, R. (eds.) IEA/AIE 2006. LNCS (LNAI), vol. 4031, pp. 1024–1033. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Cali, A., Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.: Knowledge representation approach to information integration. In: Proc. of AAAI Workshop on AI and Information Integration, pp. 58–65. AAAI Press/The MIT Press (1998)Google Scholar
  6. 6.
    Köhler, J., Philippi, S., Lange, M.: SEMEDA: ontology based semantic integration of biological databases. Bioinformatics 19(18), 2420–2427 (2003)CrossRefGoogle Scholar
  7. 7.
    Mena, E., Illarramendi, A., Kashyap, V., Sheth, A.: OBSERVER: An approach for query processing global information systems based on interoperation across pre-existing ontologies. International journal on Distributed And Parallel Databases (DAPD) 8(2), 223–271 (2000)CrossRefGoogle Scholar
  8. 8.
    Paton, N.W., Stevens, R., Baker, P., Goble, C., Bechhofer, S., Brass, A.: Query Processing in the TAMBIS Bioinformatics Source Integration System. In: SSDBM, pp. 138–147 (1999)Google Scholar
  9. 9.
    Pérez-Rey, D., Maojo, V., Garcia-Remesal, M., Alonso-Calvo, R., Billhardt, H., Martin-Sanchez, F., Sousa, A.: ONTOFUSION: Ontology-based integration of genomic and clinical databases. In: Computers in Biology and Medecine (2005)Google Scholar
  10. 10.
    Wache, H., Vögel, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., Hbner, S.: Ontology-based Integration of Information- A survey of existing approaches. In: Proceedings of IJCAI 2001 Workshop on Ontologies and Information Sharing, Seattle, Washington (2001)Google Scholar
  11. 11.
    Doan, A., Halevy, A.Y.: Semantic Integration Research in the Database Community: A Brief Survey. AI Magazine, Special Issue on Semantic Integration (Spring 2005)Google Scholar
  12. 12.
    Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou, Y., Ullman, J., Windom, J.: Integrating and Acceesing Heterogenous Information Sources in TSIMMIS. In: Proceedings of the AAAI Symposium on Information Gathering, Stanford, California, pp. 61–64 (March 1995)Google Scholar
  13. 13.
    Gruber, T.R.: A translation approach to portable ontologies. Knowledge Acquisition 5(2), 199–220 (1993)CrossRefGoogle Scholar
  14. 14.
    Simonet, A., Simonet, M.: The ISIS Methodology for Object Database Conceptual Modelling, Poster E/R 1999. In: 18th Conference on Conceptual Modeling, Paris, November 15-18 (1999)Google Scholar
  15. 15.
    Patriarche, R., Gedzelman, S., Diallo, G., Bernhard, D., Bassolet, C.G., Ferriol, S., Girard, A., Mouries, M., Palmer, P., Simonet, M.: A Tool for Textual and Conceptual Annotation of Documents. In: Proceedings of E-Challenge 2005, Ljubljana, Slovenia (2005)Google Scholar
  16. 16.
    van Rijsbergen, C.: Information retrieval. Butterworths, London (1979)Google Scholar
  17. 17.
    Kim, W., Seo, J.: Classifying schematic and data heterogeneity in multidatabase systems. IEEE Computer 24(12), 12–18 (1991)Google Scholar
  18. 18.
    Borgida, A., Lenzerini, M., Tosati, R.: Description Logics for Databases. In: The Description Logics Handbook, Theory, Implementation and Applications, Cambridge University Press, Cambridge (2002)Google Scholar
  19. 19.
    Beneventano, D., Bergamaschi, S.: The Momis methodology for integrating heterogeneous data sources. In: IFIP 2004 Congress Topical Sessions, Toulouse, France, pp. 19–24 (2004)Google Scholar
  20. 20.
    Zdobnov, E.M., Lopez, R., Apweiler, R., Etzold, T.: The EBI SRS server - recent developments. Bioinformatics 18(2), 368–373 (2002)CrossRefGoogle Scholar
  21. 21.
    Rahm, E., Bernstein, P.: A survey of approaches to automatic schema matching. VLDB Journal: Very Large Data Bases 10(4), 334–350 (2001)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Gayo Diallo
    • 1
  • Michel Simonet
    • 1
  • Ana Simonet
    • 1
  1. 1.Laboratoire TIMC-IMAG, UJF Grenoble, Fac De MédecineLa TroncheFrance

Personalised recommendations