Public-Key Encryption from ID-Based Encryption Without One-Time Signature

  • Chik How Tan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4277)


Design a secure public key encryption scheme and its security proof are one of the main interests in cryptography. In 2004, Canetti, Halevi and Katz [8] constructed a public key encryption (PKE) from a selective identity-based encryption scheme with a strong one-time signature scheme. In 2005, Boneh and Katz [6] improved Canetti-Halevi-Katz construction by replacing a strong one-time signature with a message authentication code, but it is not publicly verifiable. Later, Boyen, Mei and Waters [7] constructed PKE scheme directly from Waters’ IBE scheme [17] , which is only secure against direct chosen-ciphertext attack and is not secure against adaptive chosen-ciphertext attack. In 2006, Tan [16] further improved the efficiency of Canetti-Halevi-Katz (CHK) construction by directly from Boneh-Boyen identity based encryption (IBE) scheme [4] with a weak one-time signature. In this paper, we construct an efficient public key encryption scheme without one-time signature, which preserves a publicly verifiable property and secure against adaptive chosen-ciphertext attack. The construction of the proposed scheme is based on Boneh-Boyen identity-based encryption (IBE) scheme [2] and a trapdoor function. We also show that the proposed scheme is more efficient than CHK construction.


Cryptography public key encryption bilinear maps 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boneh, D., Boyen, X.: Secure identity based encryption without random oracles. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Boneh, D., Boyen, X.: Efficient selective-id secure identity based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security From Identity-Based Encryption. SIAM Journal on Computing (accepted) available from
  5. 5.
    Boneh, D., Franklin, M.: Identity-based encryption from Weil pairing. SIAM J. Comput. 32(3), 586–615 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Boneh, D., Katz, J.: Improved efficiency for CCA-secure cryptosystems built using identity based encryption. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 87–103. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-based techniques. In: ACM Conference on Computer and Communications Security–CCS 2005, pp. 320–329. ACM Press, New York (2005), Full version available at CrossRefGoogle Scholar
  8. 8.
    Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)Google Scholar
  10. 10.
    Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure adaptive chosen ciphertext attack. SIAM J. Comput. 33(1), 167–226 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. In: The 23rd Annual ACM Symposium on Theory of Computing – STOC 1991, pp. 542–552. ACM press, New York (1991)CrossRefGoogle Scholar
  12. 12.
    Kiltz, E.: On the limitation of the spread of an IBE-to-PKE transformation. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 274–289. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    MIRACL, Multiprecision integer and rational arithmetic C/C++ library, Shamus Software Ltd., available from
  14. 14.
    Rackoff, C., Simon, D.: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 46–64. Springer, Heidelberg (1992)Google Scholar
  15. 15.
    Shoup, V.: Sequences of games: a tool for taming complexity in security proofs (manuscript, 2004), available from
  16. 16.
    Tan, C.H.: Chosen ciphertext security from identity-based encryption without strong condition. In: Yoshiura, H., Sakurai, K., Rannenberg, K., Murayama, Y., Kawamura, S.-i. (eds.) IWSEC 2006. LNCS, vol. 4266, pp. 296–311. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Chik How Tan
    • 1
  1. 1.NISlab, Department of Computer Science and Media TechnologyGjøvik University CollegeNorway

Personalised recommendations