Advertisement

A Web Search Method Based on the Temporal Relation of Query Keywords

  • Tomoyo Kage
  • Kazutoshi Sumiya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4255)

Abstract

As use of the Web has become more popular, searching for particular content has been refined by allowing users to enter multiple keywords as queries. However, simple combinations of multiple query keywords may not generate satisfactory search results. We therefore propose a search method which automatically combines query keywords to generate queries by extracting the relations among query keywords. This method consists of two Web search processes: one to determine the temporal relations between query keywords, and one to generate queries based on the obtained temporal relations. We discuss these two processes along with experimental results and implementation issues regarding a prototype system.

Keywords

Information Retrieval Temporal Relation Web Archive Query Generation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jatowt, A., Ishizuka, M.: Summarization of Dynamic Content in Web Collections. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS, vol. 3202, pp. 245–254. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Jatowt, A., Ishizuka, M.: Temporal Web Page Summarization. In: Proceedings of the 5th International Conference on Web Information Systems Engineering, Brisbane, Australia, pp. 303–312 (2004)Google Scholar
  3. 3.
    Jatowt, A., Ishizuka, M.: Web page summarization using dynamic content. In: Proceedings of the 13th International World Wide Web Conference (poster), pp. 344–345 (2004)Google Scholar
  4. 4.
    Chien, S., Immorlica, N.: Semantic Similarity Between Search Engine Queries Using Temporal Correlation. In: Proceedings of the 14th International Conference on World Wide Web (WWW 2005), pp. 2–11 (2005)Google Scholar
  5. 5.
    Jatowt, A., Kawai, Y., Tanaka, K.: Temporal Ranking of Search Engine Results. In: Ngu, A.H.H., Kitsuregawa, M., Neuhold, E.J., Chung, J.-Y., Sheng, Q.Z. (eds.) WISE 2005. LNCS, vol. 3806, pp. 43–52. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Jatowt, A., Kawai, Y., Tanaka, K.: Using Web Archive for Improving Search Engine Results. In: Zhou, X., Li, J., Shen, H.T., Kitsuregawa, M., Zhang, Y. (eds.) APWeb 2006. LNCS, vol. 3841, pp. 893–898. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Jatowt, A., Khoo, K.B., Ishizuka, M.: Change Summarization in Web Collections. In: Proceedings of the 17th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, Ottawa, Canada, pp. 653–662 (2004)Google Scholar
  8. 8.
    Kuwabara, A., Tanaka, K.: RelaxImage: A Cross-Media Meta-Search Engine for Searching Images from Web Based on Query Relaxation. In: Proceedings of the 21st International Conference on Data Engineering (ICDE 2005) (2005)Google Scholar
  9. 9.
    Pradhan, S., Tajima, K., Tanaka, K.: A Query Model to Synthesize Answer Intervals from Indexed Video Units. IEEE Transactions on Knowledge and Data Engineering 13(5), 824–838 (2001)CrossRefGoogle Scholar
  10. 10.
    Vlachos, M., Meek, C., Vagena, Z., Gunopulos, D.: Identifying Similarities, Periodicities and Bursts for Online Search Queries. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD 2004), pp. 131–142 (2004)Google Scholar
  11. 11.
    Clusty.com: http://clusty.com/

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Tomoyo Kage
    • 1
  • Kazutoshi Sumiya
    • 1
  1. 1.University of HyogoHyogoJapan

Personalised recommendations