Expressing and Processing Timeliness Quality Aware Queries: The DQ2L Approach

  • Chao Dong
  • Sandra de F. Mendes Sampaio
  • Pedro R. Falcone Sampaio
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4231)


With the growing need for querying and combining data from multiple data sources, data analysts, database application programmers and advanced database users are increasingly facing the problem of filtering out low quality data with regard to the intended use. This paper investigates the problem of expressing and processing data quality requests during quality-aware query formulation. The paper proposes the Data Quality Query Language (DQ2L), an extension of SQL aimed at enabling query language users to express data quality requests and a query processing framework (architecture, query processing stages, metadata support and quality model) aimed at extending relational query processing with quality-aware query processing structures and techniques. The paper focuses on the timeliness data quality dimension.


Query Processing Query Result Quality Constraint Query Optimization Query Plan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Guo, H., Larson, P.-A., Ramakrishnan, R., Goldstein, J.: Relaxed Currency and Consistency: How to Say “Good Enough” in SQL. In: SIGMOD 2004, France (2004)Google Scholar
  2. 2.
    Ballou, R., Wang, R., Pazer, H., Tayi, G.K.: Modeling Information Manufacturing Systems to Determine Information Product Quality. Management Science 44(4), 462–484 (1998)zbMATHCrossRefGoogle Scholar
  3. 3.
    Gertz, M., Ozsu, T., Saake, G., Sattler, K.: Data Quality on the Web. In: Dagstuhl Seminar, Germany (2003)Google Scholar
  4. 4.
    Agrawal, P., Benjelloun, O., Das Sarma, A., Hayworth, C., Nabar, S., Sugihara, T., Widom, J.: Trio: A System for Data, Uncertainty, and Lineage. In: VLDB Conference, Seoul, Korea (2006)Google Scholar
  5. 5.
    Wang, R.Y., Reddy, M.P., Kon, H.B.: Toward Quality data: An attribute-based approach. Decision Support Systems 13, 349–372 (1995)CrossRefGoogle Scholar
  6. 6.
    de F. Mendes Sampaio, S., Dong, C., Falcone Sampaio, P.R.: Incorporating the Timeliness Quality Dimension in Internet Query Systems. In: Dean, M., Guo, Y., Jun, W., Kaschek, R., Krishnaswamy, S., Pan, Z., Sheng, Q.Z. (eds.) WISE 2005 Workshops. LNCS, vol. 3807, pp. 53–62. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Peralta, V., Ruggia, R., Kedad, Z., Bouzeghoub, M.: A Framework for Data Quality Evaluation in a Data Integration System. In: Anais do SBBD-SBES 2004, Brazil (2004)Google Scholar
  8. 8.
    Naumann, F.: Quality-Driven Query Answering for Integrated Information Systems. LNCS, vol. 2261. Springer, Heidelberg (2002)zbMATHCrossRefGoogle Scholar
  9. 9.
    Mecella, M., Scannapieco, M., Virgillito, A., Baldoni, R., Catarci, T., Batini, C.: The DaQuinCIS Broker: Querying Data and Their Quality in Cooperative Information Systems. J. Data Semantics 1, 208–232 (2003)CrossRefGoogle Scholar
  10. 10.
    Majkic, Z.: A General Framework for Query Answering in Data Quality-based Cooperative Information Systems. In: Proc. of the Intl. Workshop on Information Quality in Information Systems, pp. 44–50 (2004)Google Scholar
  11. 11.
    de F. Mendes Sampaio, S., Dong, C., Falcone Sampaio, P.R.: Building a data quality aware internet query system for health care applications. In: Proc. Of Information Resources Management Association International Conference - Databases Track, San Diego, USA (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Chao Dong
    • 1
  • Sandra de F. Mendes Sampaio
    • 1
  • Pedro R. Falcone Sampaio
    • 1
  1. 1.School of InformaticsUniversity of ManchesterManchester

Personalised recommendations