Chosen Ciphertext Security from Identity-Based Encryption Without Strong Condition

  • Chik How Tan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4266)

Abstract

Recently, Canetti et al [11] gave a generic construction (called CHK construction) of public key encryption (PKE) from a selective identity-based encryption scheme combined with a strong one-time signature scheme. Later, few schemes were proposed to improve the efficiency of CHK construction [11], for example, Boneh-Katz scheme [8] replaced a strong one-time signature with a message authentication code and Boyen-Mei-Waters scheme [9] was constructed directly from Waters’ IBE scheme. But, both constructions have either trade-off the publicly verifiable property or security against adaptive chosen-ciphertext attack. We ask a question whether it is possible to construct an efficient and publicly verifiable PKE scheme from a selective IBE scheme with a weak one-time signature scheme. In this paper, we provide an affirmative answer and construct a public key encryption scheme which preserves the publicly verifiable property and is secure against adaptive chosen-ciphertext attack. The construction of the proposed scheme is based on Boneh-Boyen identity-based encryption (IBE) scheme [5] and a weak one-time signature scheme (using Waters’ signature scheme [24]) built within Boneh-Boyen IBE scheme. In this construction, one-time signature scheme is not required to be strongly existential unforgeable as Waters’ signature scheme is not a strongly existential unforgeability. We also show that the proposed scheme is ”almost” as efficient as the original Boneh-Boyen IBE scheme.

Keywords

Cryptography public key encryption bilinear map 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    An, J.-H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Boneh, D., Boyen, X.: Secure identity based encryption without random oracles. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Boneh, D., Boyen, X.: Efficient selective-id secure identity based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security From Identity-Based Encryption. SIAM Journal on Computing (accepted), available from: http://www.cs.umd.edu/~jkatz/papers/id-cca-journal/pdf
  6. 6.
    Boneh, D., Franklin, M.: Identity-based encryption from Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Boneh, D., Franklin, M.: Identity-based encryption from Weil pairing. SIAM J. Comput. 32(3), 586–615 (2003)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Boneh, D., Katz, J.: Improved efficiency for CCA-secure cryptosystems built using identity based encryption. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 87–103. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-based techniques. In: ACM Conference on Computer and Communications Security - CCS 2005, pp. 320–329. ACM Press, New York (2005), Full version available at: http://eprint.iacr.org/2005/288 CrossRefGoogle Scholar
  10. 10.
    Boneh, D., Shen, E., Waters, B.: Strongly unforgeable signatures based on computational Diffie-Hellman. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 229–240. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)Google Scholar
  13. 13.
    Cramer, R., Shoup, V.: Universal hash proofs and paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Cramer, R., Shoup, V.: Design and analysis of prractical public-key encryption schemes secure adaptive chosen ciphertext attack. SIAM J. Comput. 33(1), 167–226 (2003)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. In: The 23rd Annual ACM Symposium on Theory of Computing – STOC 1991, pp. 542–552. ACM Press, New York (1991)CrossRefGoogle Scholar
  16. 16.
    Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Computing 17(2), 281–308 (1988)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Kiltz, E.: On the limitation of the spread of an IBE-to-PKE transformation. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 274–289. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    MIRACL, Multiprecision integer and rational arithmetic C/C++ library, Shamus Software Ltd., available from: http://indigo.ie/~mscott/
  19. 19.
    Naccache, D.: Secure and practical identity-based encryption (2005), available from: http://eprint.iacr.org/2005/369
  20. 20.
    Noar, N., Young, M.: Universal one-way hash functions and their cryptographic applications. In: The 21st ACM Symposium on Theory of Computing – STOC 1989, pp. 33–43. ACM Press, New York (1989)CrossRefGoogle Scholar
  21. 21.
    Okamoto, T.: Cryptography based on bilinear maps. In: Fossorier, M.P.C., Imai, H., Lin, S., Poli, A. (eds.) AAECC 2006. LNCS, vol. 3857, pp. 35–50. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Rackoff, C., Simon, D.: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)Google Scholar
  23. 23.
    Shoup, V.: Sequences of games: a tool for taming complexity in security proofs (manuscript, 2004), available from: http://eprint.iacr.org/2004/332
  24. 24.
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Chik How Tan
    • 1
  1. 1.NISlab, Department of Computer Science and Media TechnologyGjøvik University CollegeNorway

Personalised recommendations