Extending Microaggregation Procedures for Time Series Protection

  • Jordi Nin
  • Vicenç Torra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4259)

Abstract

Privacy is becoming a pervasive issue, as nowadays information is gathered by all kind of information systems.

In this paper we introduce a method for database protection in the case that the data under consideration is expressed in terms of time series. We propose the use of microaggregation for this purpose and extend standard microaggregation so that it works for this kind of data.

Keywords

privacy masking methods time series microaggregation clustering time series distances 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abowd, J.M., Woodcock, S.D.: Disclosure Limitation in Longitudinal Linked Data. In: Doyle, P., Lane, J.I., Theeuwes, J.J.M., Zayatz, L.V. (eds.) Confidentiality, Disclosure and Data Access: Theory and Practical Applications for Statistical Agencies, pp. 215–277. North-Holland, Amsterdam (2001)Google Scholar
  2. 2.
    Domingo-Ferrer, J., Mateo-Sanz, J.M.: Practical data-oriented microaggregation for statistical disclosure control. IEEE Trans. on Knowledge and Data Engineering 14, 189–201 (2002)CrossRefGoogle Scholar
  3. 3.
    Domingo-Ferrer, J., Torra, V.: Disclosure methods and information loss for microdata. In: Doyle, P., Lane, J.I., Theeuwes, J.J.M., Zayatz, L.V. (eds.) Confidentiality, Disclosure and Data Access: Theory and Practical Applications for Statistical Agencies, pp. 91–110. North-Holland, Amsterdam (2001)Google Scholar
  4. 4.
    Domingo-Ferrer, J., Torra, V.: A quantitative comparison of disclosure methods for microdata. In: Doyle, P., Lane, J.I., Theeuwes, J.J.M., Zayatz, L.V. (eds.) Confidentiality, Disclosure and Data Access: Theory and Practical Applications for Statistical Agencies, pp. 111–133. North-Holland, Amsterdam (2001)Google Scholar
  5. 5.
    Domingo-Ferrer, J., Torra, V.: Ordinal, Continuous and Heterogeneous k-Anonymity Through Microaggregation. Data Mining and Knowledge Discovery 11, 195–212 (2005)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Felso, F., Theeuwes, J., Wagner, G.G.: Disclosure Limitation Methods in Use: Results of a Survey. In: Doyle, P., Lane, J.I., Theeuwes, J.J.M., Zayatz, L.V. (eds.) Confidentiality, Disclosure and Data Access: Theory and Practical Applications for Statistical Agencies, pp. 17–42. North-Holland, Amsterdam (2001)Google Scholar
  7. 7.
    Möller-Levet, C.S., Klawonn, F., Cho, K.-H., Wolkenhauer, O.: Fuzzy clustering of short time series and unevenly distributed sampling points. In: Proceedings of the 5th International Symposium on Intelligent Data Analysis, Berlin, Germany, August 28-30 (2003)Google Scholar
  8. 8.
    Nin, J., Torra, V.: Distance Based Re-identification for Time Series, Analysis of Distances. In: Domingo-Ferrer, J., Franconi, L. (eds.) PSD 2006. LNCS, vol. 4302, pp. 205–216. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Oganian, A., Domingo-Ferrer, J.: On the complexity of microaggregation. In: Second Eurostat-UN/ECE Joint Work Session on Statistical Data Confidentiality, Skopje, Macedonia (March 2001)Google Scholar
  10. 10.
    Stock Exchange web, Sabadell Bank, http://www.bsmarkets.com/
  11. 11.
    Torra, V.: Microaggregation for categorical variables: A median based approach. In: Domingo-Ferrer, J., Torra, V. (eds.) PSD 2004. LNCS, vol. 3050, pp. 162–174. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Warren Liao, T.: Clustering of time series data - a survey. Pattern Recognition 38, 1857–1874 (2005)MATHCrossRefGoogle Scholar
  13. 13.
    Willenborg, L., de Waal, T.: Elements of Statistical Disclosure Control. Lecture Notes in Statistics. Springer, Heidelberg (2001)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jordi Nin
    • 1
  • Vicenç Torra
    • 1
  1. 1.IIIA-CSICBellaterraSpain

Personalised recommendations