Advertisement

Ontology Driven Concept Approximation

  • Sinh Hoa Nguyen
  • Trung Thanh Nguyen
  • Hung Son Nguyen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4259)

Abstract

This paper investigates the concept approximation problem using ontology as an domain knowledge representation model and rough set theory. In [7] [8], we have presented a rough set based multi-layered learning framework for approximation of complex concepts assuming the existence of a simple concept hierarchy. The proposed methodology utilizes the ontology structure to learn compound concepts using the rough approximations of the primitive concepts as input attributes. In this paper we consider the extended model for knowledge representation where the concept hierarchies are embedded with additional knowledge in a form of relations or constrains among sub-concepts. We present an extended multi-layered learning scheme that can incorporate the additional knowledge and propose some classes of such relations that assure an improvement of the learning algorithm as well as a convenience of the knowledge modeling process. We illustrate the proposed method and present some results of experiment with data from sunspot recognition problem.

Keywords

ontology concept hierarchy rough sets classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bazan, J., Nguyen, H.S., Skowron, A., Szczuka, M.: A view on rough set concept approximation. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 181–188. Springer-Verlag, Heidelberg (2003)Google Scholar
  2. 2.
    Bazan, J.G., Szczuka, M.S.: RSES and RSESlib - A Collection of Tools for Rough Set Computations. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, p. 106. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Davies, J., Fensel, D., van Harmelen, F. (eds.): Towards the Semantic Web – Ontology-Driven Knowledge Management. Wiley, London (2002)Google Scholar
  4. 4.
    Gomez-Perez, A., Corcho, O., Fernandez-Lopez, M.: Ontological Engineering. Springer, London (2002)Google Scholar
  5. 5.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, San Francisco (2000)Google Scholar
  6. 6.
    Kloesgen, W., Żytkow, J. (eds.): Handbook of Knowledge Discovery and Data Mining. Oxford University Press, Oxford (2002)zbMATHGoogle Scholar
  7. 7.
    Nguyen, S.H., Bazan, J.G., Skowron, A., Nguyen, H.S.: Layered learning for concept synthesis. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 187–208. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Nguyen, S.H., Nguyen, T.T., Nguyen, H.S.: Rough Set Approach to Sunspot Classification Problem. In: Ślęzak, D., Yao, J., Peters, J.F., Ziarko, W.P., Hu, X. (eds.) RSFDGrC 2005. LNCS, vol. 3642, pp. 263–272. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Pawlak, Z., Skowron, A.: A rough set approach for decision rules generation. In: Proc. of IJCAI 1993, Chambéry, France, pp. 114–119. Morgan Kaufmann, San Francisco (1993)Google Scholar
  11. 11.
    Skowron, A.: Approximation spaces in rough neurocomputing. In: Inuiguchi, M., Tsumoto, S., Hirano, S. (eds.) Rough Set Theory and Granular Computing, pp. 13–22. Springer, Heidelberg (2003)Google Scholar
  12. 12.
    Sowa, J.: Knowledge Representation: Logical, Philosophical, and Computational Foundations. Brooks Cole Publishing Co., Pacific Grove (2000)Google Scholar
  13. 13.
    Stone, P.: Layered Learning in Multi-Agent Systems: A Winning Approach to Robotic Soccer. The MIT Press, Cambridge (2000)Google Scholar
  14. 14.
    Ziarko, W.: Variable precision rough set model. Journal of Computer and System Sciences 46, 39–59 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Zupan, B., Bohanec, M., Bratko, I., Demsar, J.: Machine learning by function decomposition. In: Proc. Fourteenth International Conference on Machine Learning, San Mateo, CA, pp. 421–429. Morgan Kaufmann, San Francisco (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sinh Hoa Nguyen
    • 1
  • Trung Thanh Nguyen
    • 2
  • Hung Son Nguyen
    • 3
  1. 1.Polish-Japanese Institute of Information TechnologyWarsawPoland
  2. 2.Department of Computer ScienceUniversity of BathBathUnited Kingdom
  3. 3.Institute of MathematicsWarsaw UniversityWarsawPoland

Personalised recommendations