Two Discrete-Euclidean Operations Based on the Scaling Transform

  • Gaëlle Largeteau-Skapin
  • Eric Andres
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4245)

Abstract

In this paper we study the relationship between the Euclidean and the discrete world thru two operations based on the Euclidean scaling function: the discrete smooth scaling and the discrete based geometrical simplification.

Keywords

discrete geometry operations discrete scale multi-representation modeller 

References

  1. 1.
    Andres, E., Menon, R., Sibata, C., Acharya, R.: Rational bitmap scaling. Pattern Recognition Letters 17(14), 1471–1475 (1996)CrossRefGoogle Scholar
  2. 2.
    Cohen-Or, D., Kaufman, A.: Fundamentals of surface voxelization. Graphical models and image processing 57(6), 453–461 (1995)CrossRefGoogle Scholar
  3. 3.
    Andres, E., Menon, R., Acharya, R., Sibata, C.: Discrete linear objects in dimension n: The standard model. Graphical Models 65, 92–111 (2003)MATHCrossRefGoogle Scholar
  4. 4.
    Andres, E., Acharya, R., Sibata, C.: The supercover 3d polygon. In: Discrete Geometry for Computer Imagery, Lyon, France. LNCS, pp. 237–242. Springer, Heidelberg (1996)Google Scholar
  5. 5.
    Andres, E., Nehlig, P., Françon, J.: Supercover of straight lines, planes and triangles. In: Ahronovitz, E. (ed.) DGCI 1997. LNCS, vol. 1347, pp. 243–257. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  6. 6.
    Lincke, C., Wuthrich, W.: Towards a unified approach between digitization of linear objects and discrete analytical objects. In: Skala, V. (ed.) WSCG 2000 Workshop, pp. 124–131 (2000)Google Scholar
  7. 7.
    Breton, R., Sivignon, I., Dupont, F., Andrès, É.: Towards an invertible euclidean reconstruction of a discrete object. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 246–256. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Dexet, M., Andrès, É.: Linear discrete line recognition and reconstruction based on a generalized preimage. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006. LNCS, vol. 4040, pp. 174–188. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Françon, J., Schramm, J.M., Tajine, M.: Recognizing arithmetic straight lines and planes. In: Miguet, S., Ubéda, S., Montanvert, A. (eds.) DGCI 1996. LNCS, vol. 1176, pp. 141–150. Springer, Heidelberg (1996)Google Scholar
  10. 10.
    Rosenfeld, A., Klette, R.: Digital straightness. In: UMD (2001)Google Scholar
  11. 11.
    Reveillès, J.P.: Géométrie discrète, Calcul en nombres entiers et algorithmique. Ph.D thesis, Université Louis Pasteur, Strasbourg, France (1991)Google Scholar
  12. 12.
    Dorst, L., Smeulders, A.: Discrete representation of straight lines. IEEE Transactions on Pattern Analysis and Machine Intelligence 6(4), 450–463 (1984)MATHCrossRefGoogle Scholar
  13. 13.
    Tajine, M., Ronse, M.: Preservation of topolgy by hausdorff discretization and comparison to other discretization schemes. Theoretical Computer Science 283(1), 243–268 (2002)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Gaëlle Largeteau-Skapin
    • 1
  • Eric Andres
    • 1
  1. 1.Laboratoire SICUniversité de PoitiersFuturoscope ChasseneuilFrance

Personalised recommendations