Mining h-Dimensional Enhanced Semantic Association Rule Based on Immune-Based Gene Expression Programming

  • Tao Zeng
  • Changjie Tang
  • Yintian Liu
  • Jiangtao Qiu
  • Mingfang Zhu
  • Shucheng Dai
  • Yong Xiang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4256)

Abstract

Rule mining is very important for data mining. However, traditional association rule is relatively weak in semantic representation. To address it, the main contributions of this paper included: (1) proposing formal concepts on h-Dimensional Enhanced Semantic Association Rule (h-DESAR) with self-contained logic operator; (2) proposing the h-DESAR mining method based on Immune-based Gene Expression Programming (ERIG); (3) presenting some novel key techniques in ERIG. Experimental results showed that ERIG is feasible, effective and stable.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Imiclinski, T., Swami, A.: Database mining: A performance perspective. IEEE Trans. Knowledge and Data Enginnering 5, 914–925 (1993)CrossRefGoogle Scholar
  2. 2.
    Agrawal, R., Srikant, R.: Fast algorithm for mining association rules. In: Proceeding 1994 International conference Very Large Data Bases (VLDB 1994) (1994)Google Scholar
  3. 3.
    Han, J., Kambr, M.: Data Mining-Concepts and Techniques. Higher Education Press, Beijing (2001)Google Scholar
  4. 4.
    Fu, Y., Han, J.: Meta-rule-guided mining of association rules in relational databases. In: KDOOD 1995, Singapore, pp. 39–46 (December 1995)Google Scholar
  5. 5.
    Zuo, J., Tang, C., Tianqing, Z.: Mining Predicate Association Rule by Gene Expression Programming. In: Meng, X., Su, J., Wang, Y. (eds.) WAIM 2002. LNCS, vol. 2419, p. 92. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Ferreira, C.: Gene Expression Programming: A New Adaptive Algorithm for Solving Problems. Complex Systems 13(2), 87–129 (2001)MATHMathSciNetGoogle Scholar
  7. 7.
    Zuo, J.: Research on the Key Techniques of Gene Expression Programming: [Ph. D. dissertation]. Sichuan University, Sichuan (2004)Google Scholar
  8. 8.
    Silberschatz, K.: Databse System Concepts, 4th edn. McGraw-Hill Computer Science Series (2001)Google Scholar
  9. 9.
    De Castro, L.N., Von Zuben, F.J.: Artificial Immune Systems: Part I-Basic Theory and Applications. Technical Report, TR- DCA Ol/99, p. 12 (December 1999)Google Scholar
  10. 10.
    Dasgupta, D., Ji, Z., Gonzalez, F.: Artificial immune system (AIS) research in the last five years. In: Evolutionary Computation, CEC 2003 (2003)Google Scholar
  11. 11.
    Forrest, S., Perelson., A.S., et al.: Self-Nonself Discrimination in a Computer. In: Proceedings of IEEE Svmposiimi on Research in Secwitv and Privacy (1994)Google Scholar
  12. 12.
    Li, T., Liu, X., Li, H.: A New Model for Dynamic Intrusion Detection. In: Desmedt, Y.G., Wang, H., Mu, Y., Li, Y. (eds.) CANS 2005. LNCS, vol. 3810, pp. 72–84. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Tao Zeng
    • 1
  • Changjie Tang
    • 1
  • Yintian Liu
    • 1
  • Jiangtao Qiu
    • 1
  • Mingfang Zhu
    • 1
    • 2
  • Shucheng Dai
    • 1
  • Yong Xiang
    • 1
    • 3
  1. 1.School of ComputerSichuan Univ.ChengduChina
  2. 2.Dept. of Computer Sci. & Tech.Shaanxi Univ. of Tech.HanzhongChina
  3. 3.Chengdu Electromechanical collegeChengduChina

Personalised recommendations