A Graphical Representation for Biological Processes in the Stochastic pi-Calculus

  • Andrew Phillips
  • Luca Cardelli
  • Giuseppe Castagna
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4230)


This paper presents a graphical representation for the stochastic π-calculus, which is formalised by defining a corresponding graphical calculus. The graphical calculus is shown to be reduction equivalent to stochastic π, ensuring that the two calculi have the same expressive power. The graphical representation is used to model a couple of example biological systems, namely a bistable gene network and a mapk signalling cascade. One of the benefits of the representation is its ability to highlight the existence of cycles, which are a key feature of biological systems. Another benefit is its ability to animate interactions between system components, in order to visualise system dynamics. The graphical representation can also be used as a front end to a simulator for the stochastic π-calculus, to help make modelling and simulation of biological systems more accessible to non computer scientists.


Graphical Representation Reaction Equation Mapk Cascade Parallel Composition Reduction Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andre, C.: Synccharts: A visual representation of reactive behaviors. research report tr95-52, University of Nice, Sophia Antipolis (1995)Google Scholar
  2. 2.
    Blossey, R., Cardelli, L., Phillips, A.: A compositional approach to the stochastic dynamics of gene networks. Transactions in Computationial Systems Biology 3939, 99–122 (2006)MathSciNetGoogle Scholar
  3. 3.
    Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 403(6767), 335–338 (2000)CrossRefGoogle Scholar
  4. 4.
    Francois, P., Hakim, V.: Design of genetic networks with specified functions by evolution in silico. PNAS 101, 580–585 (2004)CrossRefGoogle Scholar
  5. 5.
    Gansner, E.R., North, S.C.: An open graph visualization system and its applications to software engineering. Software-Practice and Experience, 1–5 (1999)Google Scholar
  6. 6.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  7. 7.
    Harel, D.: Statecharts: A Visual Formalism for Complex Systems. Sci. Comput. Prog. 8, 231–274 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Huang, C.-Y.F., Ferrel Jr., J.E.: Ultrasensitivity of the mitogen-activated protein kinase cascade. PNAS 93, 10078–10083 (1996)CrossRefGoogle Scholar
  9. 9.
    Lecca, P., Priami, C.: Cell cycle control in eukaryotes: a biospi model. In: BioConcur 2003. ENTCS (2003)Google Scholar
  10. 10.
    Milner, R.: Pi-nets: A graphical form of π-calculus. In: Sannella, D. (ed.) ESOP 1994. LNCS, vol. 788, pp. 26–42. Springer, Heidelberg (1994)Google Scholar
  11. 11.
    Milner, R.: Communicating and Mobile Systems: the π-Calculus. Cambridge University Press, Cambridge (1999)Google Scholar
  12. 12.
    Montanari, U., Pistore, M.: History-dependent automata: An introduction. In: Bernardo, M., Bogliolo, A. (eds.) SFM-Moby 2005. LNCS, vol. 3465, pp. 1–28. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Oda, K., Matsuoka, Y., Funahashi, A., Kitano, H.: A comprehensive pathway map of epidermal growth factor receptor signaling. Molecular Systems Biology 1, 1–17 (2005)CrossRefGoogle Scholar
  14. 14.
    Petri, C.A.: Kommunikation mit Automaten. PhD thesis, Bonn: Institut für Instrumentelle Mathematik, Schriften des IIM Nr. 2 (1962); Second Edition: Technical Report RADC-TR-65–377, vol.1(suppl. 1). Griffiss Air Force Base, New York (1966) (English translation)Google Scholar
  15. 15.
    Phillips, A.: The Stochastic Pi-Machine, Available from:
  16. 16.
    Phillips, A., Cardelli, L.: A correct abstract machine for the stochastic pi-calculus. In: Bioconcur 2004. ENTCS (August 2004)Google Scholar
  17. 17.
    Phillips, A., Cardelli, L.: A graphical representation for the stochastic pi-calculus. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds.) Transactions on Computational Systems Biology VII. LNCS (LNBI), vol. 4230, pp. 123–152. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Priami, C., Regev, A., Shapiro, E., Silverman, W.: Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Information Processing Letters 80, 25–31 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Priami, C.: Stochastic π-calculus. The Computer Journal 38(6), 578–589 (1995); Proceedings of PAPM 1995 (1995) CrossRefGoogle Scholar
  20. 20.
    Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochemical processes using the pi- calculus process algebra. In: Altman, R.B., Dunker, A.K., Hunter, L., Klein, T.E. (eds.) Pacific Symposium on Biocomputing, vol. 6, pp. 459–470. World Scientific, Singapore (2001)Google Scholar
  21. 21.
    Sangiorgi, D., Walker, D.: The π-calculus: a Theory of Mobile Processes. Cambridge University Press, Cambridge (2001)Google Scholar
  22. 22.
    Turner, D.N.: The Polymorphic Pi-Calculus: Theory and Implementation. PhD thesis, LFCS (June 1996); CST-126-96 (also published, ECS-LFCS-96-345)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Andrew Phillips
    • 1
  • Luca Cardelli
    • 1
  • Giuseppe Castagna
    • 2
  1. 1.Microsoft ResearchCambridgeUK
  2. 2.École Normale SupérieureParisFrance

Personalised recommendations