Graph Theory for Rule-Based Modeling of Biochemical Networks

  • Michael L. Blinov
  • Jin Yang
  • James R. Faeder
  • William S. Hlavacek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4230)


We introduce a graph-theoretic formalism suitable for modeling biochemical networks marked by combinatorial complexity, such as signal-transduction systems, in which protein-protein interactions play a prominent role. This development extends earlier work by allowing for explicit representation of the connectivity of a protein complex. Within the formalism, typed attributed graphs are used to represent proteins and their functional components, complexes, conformations, and states of post-translational covalent modification. Graph transformation rules are used to represent protein-protein interactions and their effects. Each rule defines a generalized reaction, i.e., a class of potential reactions that are logically consistent with knowledge or assumptions about the represented biomolecular interaction. A model is specified by defining 1) molecular-entity graphs, which delimit the molecular entities and material components of a system and their possible states, 2) graph transformation rules, and 3) a seed set of graphs representing chemical species, such as the initial species present before introduction of a signal. A reaction network is generated iteratively through application of the graph transformation rules. The rules are first applied to the seed graphs and then to any and all new graphs that subsequently arise as a result of graph transformation. This procedure continues until no new graphs are generated or a specified termination condition is satisfied. The formalism supports the generation of a list of reactions in a system, which can be used to derive different types of physicochemical models, which can be simulated and analyzed in different ways. The processes of generating and simulating the network may be combined so that species are generated only as needed.


Reaction Network Graph Transformation Pattern Graph Molecular Entity Graph Isomorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aladjem, M.I., Pasa, S., Parodi, S., Weinstein, J.N., Pommier, Y., Kohn, K.W.: Molecular interaction maps—a diagrammatic graphical language for bioregulatory networks. In: Sci. STKE 2004, p. 8 (2004)Google Scholar
  2. 2.
    Andries, M., Engels, G., Habel, A., Hoffmann, B., Kreowski, H.J., Kuske, S., Plump, D., Schurr, A., Taentzer, A.: Graph transformation for specification and programming. Sci. Comput. Program. 34, 1–54 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Benkö, G., Flamm, C., Stadler, P.F.: A graph-based toy model of chemistry. J. Chem. Inf. Comput. Sci. 43, 1085–1093 (2003)Google Scholar
  4. 4.
    Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20, 3289–3291 (2004)CrossRefGoogle Scholar
  5. 5.
    Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: A network model of early events in epidermal growth factor receptor signaling that accounts for combinatorial complexity. BioSystems (in press)Google Scholar
  6. 6.
    Borisov, N.M., Markevich, N.I., Hoek, J.B., Kholodenko, B.N.: Signaling through receptors and scaffolds: independent interactions reduce combinatorial complexity. Biophys. J. 89, 951–966 (2005)CrossRefGoogle Scholar
  7. 7.
    Bray, D.: Molecular prodigality. Science 299, 1189–1190 (2003)CrossRefGoogle Scholar
  8. 8.
    Conzelmann, H., Saez-Rodriguez, J., Sauter, T., Bullinger, E., Allgower, F., Gilles, E.D.: Reduction of mathematical models of signal transduction networks: simulation-based approach applied to EGF receptor signalling. Syst. Biol. 1, 159–169 (2004)CrossRefGoogle Scholar
  9. 9.
    Danos, V., Laneve, C.: Graphs for core molecular biology. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 34–46. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Danos, V., Laneve, C.: Formal molecular biology. Theor. Comput. Sci. 325, 69–110 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Dembo, M., Goldstein, B.: Theory of equilibrium binding of symmetric bivalent haptens to cell surface antibody: application to histamine release from basophils. J. Immunol. 121, 345–353 (1978)Google Scholar
  12. 12.
    Efroni, S., Harel, D., Cohen, I.R.: Towards rigorous comprehension of biological complexity: modeling, execution and visualization of thymic T cell maturation. Genome Res. 13, 2485–2497 (2003)CrossRefGoogle Scholar
  13. 13.
    Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A., Corradini, A.: Algebraic approaches to graph transformation. Part II: single pushout approach and comparison with double pushout approach. In: Ehrig, H., Kreowski, H.-J., Montanari, U., Rozemberg, G. (eds.) Handbook of Graph Grammars and Computing by Graph Transformation, ch. 4, vol. 1, pp. 247–312. World Scientific, Singapore (1996)Google Scholar
  14. 14.
    Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., Sonmez, K.: Pathway logic: symbolic analysis of biological signaling. In: Pac. Symp. Biocomput., pp. 400–412 (2002)Google Scholar
  15. 15.
    Endy, D., Brent, R.: Modelling cellular behaviour. Nature 409, 391–395 (2001)CrossRefGoogle Scholar
  16. 16.
    Faeder, J.R., Blinov, M.L., Hlavacek, W.S.: Graphical rule-based representation of signal-transduction networks. In: Proc. ACM Symp. Appl. Computing, pp. 133–140 (2005)Google Scholar
  17. 17.
    Faeder, J.R., Blinov, M.L., Hlavacek, W.S.: Rule-based modeling of biochemical networks. Complexity 10, 22–41 (2004)CrossRefGoogle Scholar
  18. 18.
    Faeder, J.R., Blinov, M.L., Goldstein, B., Hlavacek, W.S.: Combinatorial complexity and dynamical restriction of network flows in signal transduction. Syst. Biol. 2, 5–15 (2005)CrossRefGoogle Scholar
  19. 19.
    Faeder, J.R., Hlavacek, W.S., Reischl, I., Blinov, M.L., Metzger, H., Redondo, A., Wofsy, C., Goldstein, B.: Investigation of early events in FcεRI-mediated signaling using a detailed mathematical model. J. Immunol. 170, 3769–3781 (2003)Google Scholar
  20. 20.
    Fages, F., Soliman, S., Chabrier-Rivier, N.: Modelling and querying interaction networks in the biochemical abstract machine BIOCHAM. J. Biol. Phys. Chem. 4, 64–73 (2004)CrossRefGoogle Scholar
  21. 21.
    Faulon, J.-L.: Isomorphism, automorphism partitioning, and canonical labeling can be solved in polynomial-time for molecular graphs. J. Chem. Inf. Comput. Sci. 38, 432–444 (1998)Google Scholar
  22. 22.
    Finney, A.: Developing SBML beyond level 2: proposals for development. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 242–247. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)CrossRefGoogle Scholar
  25. 25.
    Goldstein, B., Faeder, J.R., Hlavacek, W.S., Blinov, M.L., Redondo, A., Wofsy, C.: Modeling the early signaling events mediated by FcεRI. Mol. Immunol. 38, 1213–1219 (2002)CrossRefGoogle Scholar
  26. 26.
    Goldstein, B., Faeder, J.R., Hlavacek, W.S.: Mathematical and computational models of immune-receptor signalling. Nat. Rev. Immunol. 4, 445–456 (2004)CrossRefGoogle Scholar
  27. 27.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, San Francisco (1979)zbMATHGoogle Scholar
  28. 28.
    Haugh, J.M., Schneider, I.C., Lewis, J.M.: On the cross-regulation of protein tyrosine phosphatases and receptor tyrosine kinases in intracellular signaling. J. Theor. Biol. 230, 119–132 (2004)CrossRefGoogle Scholar
  29. 29.
    Hlavacek, W.S., Faeder, J.R., Blinov, M.L., Perelson, A.S., Goldstein, B.: The complexity of complexes in signal transduction. Biotechnol. Bioeng. 84, 783–794 (2003)CrossRefGoogle Scholar
  30. 30.
    Hucka, M., Finney, A., et al.: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19, 524–531 (2003)CrossRefGoogle Scholar
  31. 31.
    Hucka, M., Finney, A., et al.: Evolving a lingua franca and associated software infrastructure for computational systems biology: the Systems Biology Markup Language (SBML) project. Syst. Biol. 1, 41–53 (2004)CrossRefGoogle Scholar
  32. 32.
    Kitano, H.: A graphical notation for biochemical networks. BioSilico 1, 169–176 (2003)CrossRefGoogle Scholar
  33. 33.
    Klavins, E., Christ, R., Lipsky, D.: Graph grammars for self assembling robotic systems. In: Proc. IEEE Int. Conf. Rob. Autom., pp. 5293–5300 (2004)Google Scholar
  34. 34.
    Kohn, K.W.: Molecular interaction maps as information organizers and simulation guides. Chaos 11, 84–97 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Le Novère, N., Shimizu, T.S.: STOCHSIM: modelling of stochastic biomolecular processes. Bioinformatics 17, 575–576 (2001)CrossRefGoogle Scholar
  36. 36.
    Li, Q., Dinner, A.R., Qi, S., Irvine, D.J., Huppa, J.B., Davis, M.M., Chakraborty, A.K.: CD4 enhances T cell sensitivity to antigen by coordinating Lck accumulation at the immunological synapse. Nat. Immunol. 5, 791–799 (2004)CrossRefGoogle Scholar
  37. 37.
    Lok, L., Brent, R.: Automatic generation of cellular reaction networks with Moleculizer 1.0. Nat. Biotechnol. 23, 131–136 (2005)CrossRefGoogle Scholar
  38. 38.
    Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial time. J. Comput. Syst. Sci. 25, 42–65 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    McKay, B.D.: Practical graph isomorphism. Congressus Numerantium 30, 45–87 (1981)MathSciNetGoogle Scholar
  40. 40.
    Morton-Firth, C.J., Bray, D.: Predicting temporal fluctuations in an intracellular signalling pathway. J. Theor. Biol. 192, 117–128 (1998)CrossRefGoogle Scholar
  41. 41.
    Pawson, T., Nash, P.: Assembly of cell regulatory systems through protein interaction domains. Science 300, 445–452 (2003)CrossRefGoogle Scholar
  42. 42.
    Peri, S., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res. 13, 2363–2371 (2003)CrossRefGoogle Scholar
  43. 43.
    Priami, C., Regev, A., Shapiro, E., Silverman, W.: Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Inf. Process Lett. 80, 25–31 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochemical processes using the π-calculus process algebra. In: Pac. Symp. Biocomput., pp. 459–470 (2001)Google Scholar
  45. 45.
    Rosello, R., Valiente, G.: Graph transformation in molecular biology. In: Kreowski, H.-J., Montanari, U., Orejas, F., Rozenberg, G., Taentzer, G. (eds.) Formal Methods in Software and Systems Modeling. LNCS, vol. 3393, pp. 116–133. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  46. 46.
    Shapiro, B.E., Levchenko, A., Meyerowitz, E.M., Wold, B.J., Mjolsness, E.D.: Cellerator: extending a computer algebra system to include biochemical arrows for signal transduction simulations. Bioinformatics 19, 677–678 (2003)CrossRefGoogle Scholar
  47. 47.
    Shimizu, T.S., Aksenov, S.V., Bray, D.: A spatially extended stochastic model of the bacterial chemotaxis signalling pathway. J. Mol. Biol. 329, 291–309 (2003)CrossRefGoogle Scholar
  48. 48.
    Talcott, C., Eker, S., Knapp, M., Lincoln, P., Laderoute, K.: Pathway logic modeling of protein functional domains in signal transduction. In: Pac. Symp. Biocomput., pp. 568–580 (2004)Google Scholar
  49. 49.
    Taentzer, G.: AGG: a graph transformation environment for modeling and validation of software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 446–453. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  50. 50.
    Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23, 31–42 (1976)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Michael L. Blinov
    • 1
  • Jin Yang
    • 1
  • James R. Faeder
    • 1
  • William S. Hlavacek
    • 1
  1. 1.Theoretical Division, Los Alamos National LaboratoryTheoretical Biology and Biophysics GroupLos AlamosUSA

Personalised recommendations