From Logical Regulatory Graphs to Standard Petri Nets: Dynamical Roles and Functionality of Feedback Circuits

  • Elisabeth Remy
  • Paul Ruet
  • Luis Mendoza
  • Denis Thieffry
  • Claudine Chaouiya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4230)

Abstract

Logical modelling and Petri nets constitute two complementary approaches for the dynamical modelling of biological regulatory networks. Leaning on a translation of logical models into standard Petri nets, we propose a formalisation of the notion of circuit functionality in the Petri net framework. This approach is illustrated with the modelling and analysis of a molecular regulatory network involved in the control of Th-lymphocyte differentiation.

Keywords

genetic regulatory graphs Petri nets feedback circuit discrete dynamics qualitative analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agnello, D., Lankford, C.S.R., Bream, J., Morinobu, A., Gadina, M., O’Shea, J., Frucht, D.M.: Cytokines and transcription factors that regulate T helper cell differentiation: new players and new insights. J. Clin. Immunol. 23, 147–161 (2003)CrossRefGoogle Scholar
  2. 2.
    Alla, H., David, R.: Continuous and hybrid petri nets. Journal of Circuits, Systems, and Computers 8-1, 159–188 (1998)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Aracena, J.: Modèles mathématiques discrets associés à des systèmes biologiques. Application aux réseaux de régulation génétiques. Thèse de Doctorat Spécialité Mathématiques Appliquées, Université Joseph Fourier, Grenoble (2001)Google Scholar
  4. 4.
    Bergmann, C., Van Hemmen, J.L., Segel, L.A.: Th1 or Th2: how an appropriate T helper response can be made. Bull. Math. Biol. 63, 405–430 (2001)CrossRefGoogle Scholar
  5. 5.
    Bryant, R.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE Trans. on Computers C-35(8), 677–691 (1986)CrossRefGoogle Scholar
  6. 6.
    Chen, M., Hofestaedt, R.: Quantitative Petri net model of gene regulated metabolic networks in the cell. Silico Biology 3, 29 (2003)Google Scholar
  7. 7.
    Chaouiya, C., Remy, E., Thieffry, D.: Petri Net Modelling of Biological Regulatory Networks, IML Research report 2005-20 (2005), Accessible at: http://iml.univ-mrs.fr/editions/preprint2005/preprint2005.html
  8. 8.
    Chaouiya, C., Remy, E., Ruet, P., Thieffry, D.: Qualitative Modelling of Genetic Networks: From Logical Regulatory Graphs to Standard Petri Nets. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 137–156. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Chaouiya, C., Remy, E., Mossé, B., Thieffry, D.: Qualitative analysis of regulatory graphs: a computational tool based on a discrete formal framework. In: Benvenuti, L., De Santis, A., Farina, L. (eds.) POSTA 2003. LNCIS, vol. 294, pp. 119–126. Springer, Heidelberg (2003)Google Scholar
  10. 10.
    de Jong, H.: Modeling and Simulation of Genetic Regulatory Systems: A Literature Review. J. Comp. Biol. 9, 67–103 (2002)CrossRefGoogle Scholar
  11. 11.
    Doi, A., Fujita, S., Matsuno, H., Nagasaki, M., Miyano, S.: Constructing biological pathway models with hybrid functional Petri nets. Silico Biology 4, 23 (2004)Google Scholar
  12. 12.
    Glass, L., Kauffman, S.A.: The logical analysis of continuous, non-linear biochemical control networks. J. Theor. Biol. 39, 103–129 (1973)CrossRefGoogle Scholar
  13. 13.
    Goss, P.J.E., Peccoud, J.: Quantitative modeling of stochastic systems in molecular biology by using stochastic Petri nets. Proc. Natl. Acad. Sci. USA. 95, 6750–6755 (1998)CrossRefGoogle Scholar
  14. 14.
    Gouzé, J.L.: Positive and negative circuits in dynamical systems. J. Biol. Syst. 6, 11–15 (1998)MATHCrossRefGoogle Scholar
  15. 15.
    Heiner, M., Koch, I.: Petri Net Based Model Validation in Systems Biology. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 216–237. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Hofestädt, R., Thelen, S.: Quantitative Modeling of Biochemical Networks. Silico Biology 1, 39–53 (1998)Google Scholar
  17. 17.
    Krueger, G.R.H., Marshall, G.R., Junker, U., Schroeder, H., Buja, L.M., Wang, G.: Growth factors, cytokines, chemokines and neuropeptides in the modeling of T-cells. Vivo 16, 365–386 (2002)Google Scholar
  18. 18.
    Küffner, R., Zimmer, R., Lengauer, T.: Pathway analysis in metabolic databases via differential metabolic display (DMD). Bioinformatics 9, 925–936 (2000)Google Scholar
  19. 19.
    Larrinaga, A., Naldi, A., Sánchez, L., Thieffry, D., Chaouiya, C.: GINsim: a software suite for the qualitative modelling, simulation and analysis of regulatory networks. BioSystems (in press)Google Scholar
  20. 20.
    Matsuno, H., Tanaka, Y., Aoshima, H., Doi, A., Matsui, M., Miyano, S.: Biopathways representation and simulation on hybrid functional Petri net. Silico Biology 3, 32 (2003)Google Scholar
  21. 21.
    Mendoza L.: A network model for the control of the differentiation process in Th cells. BioSystems (in press)Google Scholar
  22. 22.
    Murata, T.: Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE 77, 541–580 (1989)CrossRefGoogle Scholar
  23. 23.
    Murphy, K.M., Reiner, S.L.: The lineage decisions on helper T cells. Nat. Rev. Immunol. 2, 933–944 (2002)CrossRefGoogle Scholar
  24. 24.
    Reddy, V.N., Liebman, M.N., Mavrovouniotis, M.L.: Qualitative analysis of biochemical reaction systems. Comput. Biol. Med. 26, 9–24 (1996)CrossRefGoogle Scholar
  25. 25.
    Remy, E., Mossé, B., Chaouiya, C., Thieffry, D.: A description of dynamical graphs associated to elementary regulatory circuits. Bioinformatics 19, ii172–178 (2003)CrossRefGoogle Scholar
  26. 26.
    Remy, E., Ruet, P., Thieffry, D.: Graphic requirement for multistability and attractive cycles in a Boolean dynamical framework, IML Research report 2005-08 (2005), Accessible at: http://iml.univ-mrs.fr/~ruet/papiers.html
  27. 27.
    Remy, É., Ruet, P.: On differentiation and homeostatic behaviours of Boolean dynamical systems. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds.) Transactions on Computational Systems Biology VII. LNCS (LNBI), vol. 4230, pp. 153–162. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  28. 28.
    Reisig, W.: Petri Nets. Springer, Heidelberg (1985)MATHGoogle Scholar
  29. 29.
    Snoussi, E.H., Thomas, R.: Logical identification of all steady states: the concept of feedback loop characteristic states. Bul. Math. Biol. 55, 973–991 (1993)MATHGoogle Scholar
  30. 30.
    Snoussi, E.H.: Necessary conditions for multistationatity and stable periodicity. J. Biol. Syst. 6, 3–9 (1998)MATHCrossRefGoogle Scholar
  31. 31.
    Soulé, C.: Graphic requirements for multistationarity. ComPlexUs 1, 123–133 (2003)CrossRefGoogle Scholar
  32. 32.
    Thomas, R.: The role of feedback circuits: positive feedback circuits are a necessary conditions for positive eigenvalues of the Jacobian matrix. Ber. Besenges. Phys. Chem. 98, 1148–1151 (1994)Google Scholar
  33. 33.
    Thomas, R., Thieffry, D., Kaufman, M.: Dynamical behaviour of biological regulatory networks–I. Biological role of feedback loops and practical use of the concept of the loop-characteristic state. Bull. Math. Biol. 57, 247–276 (1995)MATHGoogle Scholar
  34. 34.
    Weisbuch, G., De Boer, R.J., Perelson, A.S.: Localized memories in idiotypic networks. J. Theor. Biol. 146, 483–499 (1990)CrossRefGoogle Scholar
  35. 35.
    Yates, A., Bergman, C., Van Hemmen, J.L., Stark, J., Callard, R.: Cytokine-mediated regulation of helper T cell populations. J. Theor. Biol. 206, 539–560 (2000)CrossRefGoogle Scholar
  36. 36.
    Zevedei-Oancea, I., Schuster, S.: Topological analysis of metabolic networks based on Petri net theory. Silico Biology 3, 29 (2003)Google Scholar
  37. 37.
  38. 38.
    GINsim: Gene Interaction Network simulation, http://www.esil.univ-mrs.fr/~chaouiya/GINsim

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Elisabeth Remy
    • 1
  • Paul Ruet
    • 1
  • Luis Mendoza
    • 2
  • Denis Thieffry
    • 3
  • Claudine Chaouiya
    • 3
  1. 1.IML, Campus de LuminyMarseille Cedex 9France
  2. 2.Serono Pharmacological Research InstituteGenevaSwitzerland
  3. 3.LGPDMarseille Cedex 9France

Personalised recommendations