Accessibility and Runtime Between Convex Neutral Networks

  • Per Kristian Lehre
  • Pauline C. Haddow
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4247)

Abstract

Many important fitness functions in Evolutionary Computation (EC) have high degree of neutrality i.e. large regions of the search space with identical fitness. However, the impact of neutrality on the runtime of Evolutionary Algorithms (EAs) is not fully understood. This work analyses the impact of the accessibility between neutral networks on the runtime of a simple randomised search heuristic. The runtime analysis uses a connection between random walks on graphs and electrical resistive networks.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kimura, M.: Evolutionary rate at the molecular level. Nature 217, 624–626 (1968)CrossRefGoogle Scholar
  2. 2.
    Ebner, M., Shackleton, M., Shipman, R.: How neutral networks influence evolvability. Complexity 7, 19–33 (2001)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Knowles, J.D., Watson, R.A.: On the Utility of Redundant Encodings in Mutation-Based Evolutionary Search. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 88–98. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theoretical Computer Science 276, 51–81 (2002)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Jansen, T., Wegener, I.: Evolutionary algorithms - how to cope with plateaus of constant fitness and when to reject strings of the same fitness. IEEE Transactions on Evolutionary Computation 5, 589–599 (2001)CrossRefGoogle Scholar
  6. 6.
    Lehre, P.K., Haddow, P.C.: Phenotypic Complexity and Local Variations in Neutral Degree. In: Proceedings of the Sixth International Workshop on Information Processing in Cells and Tissues (2005) to appear in BioSystems JournalGoogle Scholar
  7. 7.
    Stadler, B.M.R., Stadler, P.F., Wagner, G.P., Fontana, W.: The topology of the possible: Formal spaces underlying patterns of evolutionary change. Journal of Theoretical Biology 213, 241–274 (2001)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Lehre, P.K., Haddow, P.C.: Accessibility between Neutral Networks in Indirect Genotype-Phenotype Mappings. In: Proceedings of the Congress on Evolutionary Computation, vol. 1, pp. 419–426. IEEE Press, Los Alamitos (2005)CrossRefGoogle Scholar
  9. 9.
    Barnett, L.: Evolutionary Search on Fitness Landscapes with Neutral Networks. PhD thesis, CCNR & COGS, University of Sussex (2002)Google Scholar
  10. 10.
    Doyle, P.G., Snell, J.L.: Random Walks and Electric Networks. Mathematical Association of America (1984)Google Scholar
  11. 11.
    Chandra, A.K., Raghavan, P., Ruzzo, W.L., Smolensky, R., Tiwari, P.: The electrical resistance of a graph captures its commute and cover times. Computational Complexity 6, 312–340 (1996)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Tetali, P.: Random walks and the effective resistance of networks. Journal of Theoretical Probability 4, 101–109 (1991)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Per Kristian Lehre
    • 1
  • Pauline C. Haddow
    • 1
  1. 1.Department of Computer and Information ScienceNorwegian University of Science and Technology 

Personalised recommendations