Advertisement

Automatic Verification of Hybrid Systems with Large Discrete State Space

  • Werner Damm
  • Stefan Disch
  • Hardi Hungar
  • Jun Pang
  • Florian Pigorsch
  • Christoph Scholl
  • Uwe Waldmann
  • Boris Wirtz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4218)

Abstract

We address the problem of model checking hybrid systems which exhibit nontrivial discrete behavior and thus cannot be treated by considering the discrete states one by one, as most currently available verification tools do. Our procedure relies on a deep integration of several techniques and tools. An extension of AND-Inverter-Graphs (AIGs) with first-order constraints serves as a compact representation format for sets of configurations which are composed of continuous regions and discrete states. Boolean reasoning on the AIGs is complemented by first-order reasoning in various forms and on various levels. These include implication checks for simple constraints, test vector generation for fast inequality checks of boolean combinations of constraints, and an exact subsumption check for representations of two configurations.

These techniques are integrated within a model checker for universal CTL. Technically, it deals with discrete-time hybrid systems with linear differentials. The paper presents the approach, its prototype implementation, and first experimental data.

Keywords

Model Check Hybrid System Linear Constraint Test Vector Hybrid Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asarin, E., Dang, T., Maler, O.: The d/dt tool for verification of the hybrid systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 365–370. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Bienmüller, T., Bohn, J., Brinkmann, H., Brockmeyer, U., Damm, W., Hungar, H., Jansen, P.: Verification of the automotive control units. In: Olderog, E.-R., Steffen, B. (eds.) Correct System Design. LNCS, vol. 1710, pp. 319–341. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Bohn, J., Damm, W., Grumberg, O., Hungar, H., Laster, K.: First-order-CTL model checking. In: Arvind, V., Ramanujam, R. (eds.) FST TCS 1998. LNCS, vol. 1530, pp. 283–294. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Bretschneider, M., Holberg, H.-J., Böde, E., Brückner, I., Peikenkamp, T., Spenke, H.: Model-based safety analysis of a flap control system. In: Proc. 14th Annual INCOSE Symposium (2004)Google Scholar
  5. 5.
    Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, J.: Symbolic model checking: 1020 states and beyond. In: Proc. LICS 1990, pp. 428–439 (1990)Google Scholar
  6. 6.
    Chutinan, A., Krogh, B.H.: Computing polyhedral approximations to flow pipes for dynamic systems. In: Proc. IEEE CDC 1998 (1998)Google Scholar
  7. 7.
    Chutinan, A., Krogh, B.H.: Verification of the polyhedral-invariant hybrid automata using polygonal flowpipe approximations. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 76–90. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Clarke, E.M., Fehnker, A., Han, Z., Krogh, B.H., Ouaknine, J., Stursberg, O., Theobald, M.: Abstraction and counterexample-guided refinement in model checking of hybrid systems. Foundations of Computer Science 14(4), 583–604 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Fränzle, M., Herde, C.: Efficient proof engines for bounded model checking of hybrid systems. ENTCS 133, 119–137 (2005)Google Scholar
  10. 10.
    Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Henzinger, T.A.: The theory of hybrid automata. In: Proc. LICS 1996, pp. 278–292 (1996)Google Scholar
  12. 12.
    Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: A model checker for hybrid systems. Software Tools for Technology Transfer 1(1-2), 110–122 (1997)zbMATHCrossRefGoogle Scholar
  13. 13.
    Hoare, C.A.R.: An axiomatic basis for computer programming. Communication of the ACM 12, 576–583 (1969)zbMATHCrossRefGoogle Scholar
  14. 14.
    Hungar, H., Grumberg, O., Damm, W.: What if model checking must be truly symbolic. In: Camurati, P.E., Eveking, H. (eds.) CHARME 1995. LNCS, vol. 987, pp. 1–20. Springer, Heidelberg (1995)Google Scholar
  15. 15.
    Mishchenko, A., Chatterjee, S., Jiang, R., Brayton, R.K.: FRAIGs: A unifying representation for logic synthesis and verification. Technical report, EECS Dept., UC Berkeley (2005)Google Scholar
  16. 16.
    de Moura, L., Owre, S., Rueß, H., Rushby, J., Shankar, N., Sorea, M., Tiwari, A.: SAL 2. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 496–500. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Pigorsch, F., Scholl, C., Disch, S.: Advanced unbounded model checking by using AIGs, BDD sweeping and quantifier scheduling. In: Proc. FMCAD 2006 (2006)Google Scholar
  18. 18.
    Silva, B.I., Krogh, B.H.: Modeling and verification of hybrid system with clocked and unclocked events. In: Proc. IEEE CDC 2001 (2001)Google Scholar
  19. 19.
    Silva, B.I., Richeson, K., Krogh, B.H., Chutinan, A.: Modeling and verification of hybrid dynamical system using CheckMate. In: Proc. 4th Conference on Automation of Mixed Processes (2000)Google Scholar
  20. 20.
    Tiwari, A., Khanna, G.: Series of the abstractions for hybrid automata. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 465–478. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Torrisi, F.D., Bemporad, A.: HYSDEL - A tool for generating computational hybrid models. IEEE Transactions on Control Systems Technology 12(2), 235–249 (2004)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Werner Damm
    • 1
    • 2
  • Stefan Disch
    • 3
  • Hardi Hungar
    • 2
  • Jun Pang
    • 1
  • Florian Pigorsch
    • 3
  • Christoph Scholl
    • 3
  • Uwe Waldmann
    • 4
  • Boris Wirtz
    • 1
  1. 1.Carl von Ossietzky Universität OldenburgOldenburgGermany
  2. 2.OFFIS e.V.OldenburgGermany
  3. 3.Albert-Ludwigs-Universität FreiburgFreiburgGermany
  4. 4.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations