Models for Incomplete and Probabilistic Information

  • Todd J. Green
  • Val Tannen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4254)


We discuss, compare and relate some old and some new models for incomplete and probabilistic databases. We characterize the expressive power of c-tables over infinite domains and we introduce a new kind of result, algebraic completion, for studying less expressive models. By viewing probabilistic models as incompleteness models with additional probability information, we define completeness and closure under query languages of general probabilistic database models and we introduce a new such model, probabilistic c-tables, that is shown to be complete and closed under the relational algebra.


Representation System Probability Space Query Language Relational Algebra Query Evaluation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abiteboul, S., Duschka, O.M.: Complexity of Answering Queries Using Materialized Views. In: PODS, pp. 254–263 (1998)Google Scholar
  2. 2.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison–Wesley, Reading (1995)zbMATHGoogle Scholar
  3. 3.
    Abiteboul, S., Kanellakis, P., Grahne, G.: On the representation and querying of sets of possible worlds. Theor. Comput. Sci. 78(1), 159–187 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Arenas, M., Bertossi, L.E., Chomicki, J.: Answer sets for consistent query answering in inconsistent databases. TPLP 3(4-5), 393–424 (2003)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Barbara, D., Garcia-Molina, H., Porter, D.: A probabilistic relational data model. In: EDBT, New York, NY, USA, pp. 60–74 (1990)Google Scholar
  6. 6.
    Buneman, P., Khanna, S., Tan, W.C.: Why and Where: A Characterization of Data Provenance. In: ICDT, pp. 316–330 (2001)Google Scholar
  7. 7.
    Cavallo, R., Pittarelli, M.: The Theory of Probabilistic Databases. In: VLDB, pp. 71–81 (1987)Google Scholar
  8. 8.
    Cui, Y., Widom, J., Wiener, J.L.: Tracing the lineage of view data in a warehousing environment. ACM Trans. Database Syst. 25(2), 179–227 (2000)CrossRefGoogle Scholar
  9. 9.
    Dalvi, N., Suciu, D.: Efficient Query Evaluation on Probabilistic Databases. In: VLDB, pp. 864–875 (2004)Google Scholar
  10. 10.
    Dey, D., Sarkar, S.: A Probabilistic Relational Model and Algebra. ACM TODS 21(3), 339–369 (1996)CrossRefGoogle Scholar
  11. 11.
    Durrett, R.: Probability: Theory and Examples, 3rd edn. Duxbury Press, Boston (2004)Google Scholar
  12. 12.
    Eiter, T., Lu, J.J., Lukasiewicz, T., Subrahmanian, V.S.: Probabilistic object bases. ACM Trans. Database Syst. 26(3), 264–312 (2001)zbMATHCrossRefGoogle Scholar
  13. 13.
    Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and query answering. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS, vol. 2572, pp. 207–224. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational models with structural uncertainty. In: Proc. ICML (2001)Google Scholar
  15. 15.
    Fuhr, N., Rölleke, T.: A Probabilistic Relational Algebra for the Integration of Information Retrieval and Database Systems. ACM TODS 14(1), 32–66 (1997)Google Scholar
  16. 16.
    Grädel, E., Gurevich, Y., Hirch, C.: The Complexity of Query Reliability. In: PODS, pp. 227–234 (1998)Google Scholar
  17. 17.
    Grahne, G.: Horn Tables - An Efficient Tool for Handling Incomplete Information in Databases. In: PODS, pp. 75–82. ACM Press, New York (1989)Google Scholar
  18. 18.
    Grahne, G.: The Problem of Incomplete Information in Relational Databases. LNCS, vol. 554. Springer, Heidelberg (1991)zbMATHGoogle Scholar
  19. 19.
    Halpern, J.Y.: Reasoning About Uncertainty. MIT Press, Cambridge (2003)zbMATHGoogle Scholar
  20. 20.
    Imieliński, T., Lipski Jr., W.: Incomplete Information in Relational Databases. J. ACM 31(4), 761–791 (1984)zbMATHCrossRefGoogle Scholar
  21. 21.
    Imieliński, T., Naqvi, S.A., Vadaparty, K.V.: Incomplete objects — a data model for design and planning applications. In: SIGMOD, pp. 288–297 (1991)Google Scholar
  22. 22.
    Lakshmanan, L.V.S., Leone, N., Ross, R., Subrahmanian, V.S.: ProbView: a Flexible Probabilistic Database System. ACM TODS 22(3), 419–469 (1997)CrossRefGoogle Scholar
  23. 23.
    Lakshmanan, L.V.S., Sadri, F.: Probabilistic deductive databases. In: ILPS, pp. 254–268. MIT Press, Cambridge (1994)Google Scholar
  24. 24.
    Leone, N., Scarcello, F., Subrahmanian, V.S.: Optimal Models of Disjunctive Logic Programs: Semantics, Complexity, and Computation. IEEE Trans. Knowl. Data Eng. 16(4), 487–503 (2004)CrossRefGoogle Scholar
  25. 25.
    Libkin, L.: Aspects of Partial Information in Databases. Ph.D thesis, University of Pennsylvania (1994)Google Scholar
  26. 26.
    Libkin, L., Wong, L.: Semantic representations and query languages for or-sets. J. Computer and System Sci. 52(1), 125–142 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Reiter, R.: A sound and sometimes complete query evaluation algorithm for relational databases with null values. J. ACM 33(2), 349–370 (1986)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Sadri, F.: Modeling Uncertainty in Databases. In: ICDE, pp. 122–131. IEEE Computer Society, Los Alamitos (1991)Google Scholar
  29. 29.
    Sarma, A.D., Benjelloun, O., Halevy, A., Widom, J.: Working Models for Uncertain Data. In: ICDE (April 2006) (to appear)Google Scholar
  30. 30.
    Suciu, D., Dalvi, N.: Foundations of probabilistic answers to queries (tutorial). In: SIGMOD, pp. 963–963. ACM Press, New York (2005)Google Scholar
  31. 31.
    van der Meyden, R.: Logical Approaches to Incomplete Information: A Survey. In: Chomicki, J., Saake, G. (eds.) Logics for Databases and Information Systems. Kluwer Academic Publishers, Boston (1998)Google Scholar
  32. 32.
    Vardi, M.Y.: Querying Logical Databases. JCSS 33(2), 142–160 (1986)zbMATHMathSciNetGoogle Scholar
  33. 33.
    Widom, J.: Trio: A System for Integrated Management of Data, Accuracy, and Lineage. In: CIDR (January 2005)Google Scholar
  34. 34.
    Zimányi, E.: Query evaluation in probabilistic databases. Theoretical Computer Science 171(1–2), 179–219 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Zimányi, E., Pirotte, A.: Imperfect information in relational databases. In: Uncertainty Management in Information Systems, pp. 35–88. Kluwer, Dordrecht (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Todd J. Green
    • 1
  • Val Tannen
    • 1
  1. 1.University of Pennsylvania 

Personalised recommendations