On Exact Learning from Random Walk

  • Nader H. Bshouty
  • Iddo Bentov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4264)

Abstract

We consider a few particular exact learning models based on a random walk stochastic process, and thus more restricted than the well known general exact learning models. We give positive and negative results as to whether learning in these particular models is easier than in the general learning models.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angluin, D.: Queries and concept learning. Machine Learning 2, 319–342 (1987)Google Scholar
  2. 2.
    Bshouty, N.H.: Simple Learning Algorithms Using Divide and Conquer. Computational Complexity 6(2), 174–194 (1997)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Bartlett, P.L., Fischer, P., Höffgen, K.: Exploiting Random Walks for Learning. Information and Computation 176, 121–135 (2002)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bshouty, N.H., Mossel, E., O’Donnell, R., Servedio, R.A.: Learning DNF from Random Walks. In: FOCS 2003, page.189 (2003)Google Scholar
  5. 5.
    Diaconis, P., Graham, R., Morrison, J.: Asymptotic analysis of a random walk on a hypercube with many dimensions. Random Structures and Algorithms 1, 51–72 (1990)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ficher, P., Simon, H.: On learning ring-sum expansions. SIAM J. Comput. 21, 181–192 (1992)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Hancock, T., Mansour, Y.: Learning Monotone DNF Formulas on Product Distributions. In: Proc. 4th Ann. Workshop on Comp. Learning Theory, pp. 179–183 (1991)Google Scholar
  8. 8.
    Kearns, M., Li, M., Pitt, L., Valiant, L.: On the Learnability of Boolean Formulae. In: Proceedings of the 19th ACM Symposium on the Theory of Computing, pp. 285–195 (1987)Google Scholar
  9. 9.
    Littlestone, N.: Learning Quickly When Irrelevant Attributes Abound: A New Linear-Threshold Algorithm. Machine Learning 2(4), 285–318 (1987)Google Scholar
  10. 10.
    Mossel, E., O’Donnell, R., Servedio, R.A.: Learning juntas. STOC 2003: 206-212. Learning functions of k relevant variables. Journal of Computer and System Sciences 69(3), 421–434 (2004)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Pitt, L., Warmuth, M.K.: Prediction-preserving reducibility. Journal of Computer and System Science 41(3), 430–467 (1990)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Nader H. Bshouty
    • 1
  • Iddo Bentov
    • 1
  1. 1.Department of Computer ScienceTechnionHaifaIsrael

Personalised recommendations