Experiences from a Socio-economic Application of Induction Trees

  • Fabio B. Losa
  • Pau Origoni
  • Gilbert Ritschard
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4265)

Abstract

This paper presents a full scaled application of induction trees for non-classificatory purposes. The grown trees are used for highlighting regional differences in the women’s labor participation, by using data from the Swiss Population Census. Hence, the focus is on their descriptive rather than predictive power. Trees grown by language regions exhibit fundamental cultural differences supporting the hypothesis of cultural models in female participation. The explanatory power of the induced trees is measured with deviance based fit measures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification And Regression Trees. Chapman and Hall, New York (1984)MATHGoogle Scholar
  2. 2.
    Kass, G.V.: An exploratory technique for investigating large quantities of categorical data. Applied Statistics 29, 119–127 (1980)CrossRefGoogle Scholar
  3. 3.
    Losa, F.B., Origoni, P.: Partecipazione e non partecipazione femminile al mercato del lavoro. Modelli socioculturali a confronto. Il caso della Svizzera italiana nel contesto nazionale. Aspetti statistici, Ufficio cantonale di statistica, Bellinzona (2004)Google Scholar
  4. 4.
    Losa, F.B., Origoni, P.: The socio-cultural dimension of women’s labour force participation choices in Switzerland. International Labour Review 144, 473–494 (2005)CrossRefGoogle Scholar
  5. 5.
    Murthy, S.K.: Automatic construction of decision trees from data: A multi-disciplinary survey. Data Mining and Knowledge Discovery 2, 345–389 (1998)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Reyneri, E.: Sociologia del mercato del lavoro. Il Mulino, Bologna (1996)Google Scholar
  7. 7.
    Ritschard, G.: Computing and using the deviance with classification trees. In: Rizzi, A., Vichi, M. (eds.) COMPSTAT 2006 - Proceedings in Computational Statistics. Springer, Heidelberg (2006)Google Scholar
  8. 8.
    Ritschard, G., Zighed, D.A.: Goodness-of-fit measures for induction trees. In: Zhong, N., Raś, Z.W., Tsumoto, S., Suzuki, E. (eds.) ISMIS 2003. LNCS (LNAI), vol. 2871, pp. 57–64. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Fabio B. Losa
    • 1
  • Pau Origoni
    • 1
  • Gilbert Ritschard
    • 2
  1. 1.Statistical Office of Ticino CantonBellinzonaSwitzerland
  2. 2.Dept of EconometricsUniversity of GenevaGeneva 4Switzerland

Personalised recommendations