Advertisement

Interesting Patterns Extraction Using Prior Knowledge

  • Laurent Brisson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4265)

Abstract

One important challenge in data mining is to extract interesting knowledge and useful information for expert users. Since data mining algorithms extracts a huge quantity of patterns it is therefore necessary to filter out those patterns using various measures. This paper presents IMAK, a part-way interestingness measure between objective and subjective measure, which evaluates patterns considering expert knowledge. Our main contribution is to improve interesting patterns extraction using relationships defined into an ontology.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brisson, L., Collard, M., Pasquier, N.: Improving the Knowledge Discovery Process Using Ontologies. In: Proceedings of Mining Complex Data workshop in ICDM Conference (November 2005)Google Scholar
  2. 2.
    Klemettinen, M., Mannila, H., Ronkainen, P., Toivonen, H., Verkamo, A.: Finding interesting rules from large sets of discovered association rules. In: CIKM 1994, pp. 401–407 (November, 1994)Google Scholar
  3. 3.
    Liu, B., Hsu, W., Mun, L.-F., Lee, H.-Y.: Finding Interesting Patterns using User Expectations. Knowledge and Data Engineering 11(6), 817–832 (1999)CrossRefGoogle Scholar
  4. 4.
    Mcgarry, K.: A Survey of Interestingness Measures for Knowledge Discovery. The knowledge engineering review 00(0), 1–24 (2005)Google Scholar
  5. 5.
    Pasquier, N., Taouil, R., Bastide, Y., Stumme, G., Lakhal, L.: Generating a Condensed Representation for Association Rules. Kerschberg, L., Ras, Z., Zemankova, M. (eds.) Journal of Intelligent Information SystemsGoogle Scholar
  6. 6.
    Silberschatz, A., Tuzhilin, A.: On Subjective Measures of Interestingness in Knowledge Discovery. In: Proceedings 1st KDD conference, pp. 275–281 (August 1995)Google Scholar
  7. 7.
    Silberschatz, A., Tuzhilin, A.: What Makes Patterns Interesting in Knowledge Discovery Systems. IEEE Transaction on Knowledge and Data Engineering 8(6), 970–974 (1996)CrossRefGoogle Scholar
  8. 8.
    Stumme, G.: Conceptual On-Line Analytical Processing. In: Tanaka, K., Ghandeharizadeh, S., Kambayashi, Y. (eds.) Information Organization and Databases, ch. 14, pp. 191–203. Kluwer Academic Publishers, Dordrecht (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Laurent Brisson
    • 1
  1. 1.Laboratoire I3SUniversité de NiceFrance

Personalised recommendations