Goal Programming Methods for Constructing Additive Consistency Fuzzy Preference Relations

  • Hsuan-Shih Lee
  • Wei-Kuo Tseng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4252)


Decision makers may present their preferences over alternatives as fuzzy preference relations. Usually, there exist inconsistencies in the preference relation given by decision makers. In this paper, we propose methods based on goal programming to obtain fuzzy preference relations that satisfy additive consistency from the subjective preference relations given by decision makers.


Preference Relation Choice Function Priority Vector Fuzzy Preference Relation Additive Consistency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chiclana, F., Herrera, F., Herrera-Viedma, E.: Integrating three representation models in fuzzy multipurpose decision making based on fuzzy preference relations. Fuzzy Sets and Systems 97, 33–48 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Chiclana, F., Herrera, F., Herrera-Viedma, E.: Integrating multiplicative preference relations in a multipurpose decision-making model based on fuzzy preference relations. Fuzzy Sets and Systems 122, 277–291 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Chiclana, F., Herrera, F., Herrera-Viedma, F.E.: Reciprocity and consistency of fuzzy preference relations. In: De Baets, B., Fodor, J. (eds.) Principles of Fuzzy Preference Modelling and Decision Making, pp. 123–142. Academia Press (2003)Google Scholar
  4. 4.
    Chiclana, F., Herrera, F., Herrera-Viedma, F.E.: Rationality of induced ordered weighted operators based on the reliability of the source of information in group decision-making. Kybernetika 40, 121–142 (2004)MathSciNetGoogle Scholar
  5. 5.
    Cogger, K.O., Yu, P.L.: Eigenweight vectors and least-distance approximation for revealed preference in pairwise weight ratios. Journal of Optimization Theory and Application 46, 483–491 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Crawford, G., Williams, C.: A note on the analysis of subjective judgement matrices. Journal of Mathematical Psychology 29, 387–405 (1985)zbMATHCrossRefGoogle Scholar
  7. 7.
    Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Application. Academic Press, New York (1980)Google Scholar
  8. 8.
    Fan, Z.-P., Xial, S.-H., Hu, G.-F.: An optimization method for integrating two kinds of preference information in group decision-making. Computers & Industrial Engtineering 46, 329–335 (2004)CrossRefGoogle Scholar
  9. 9.
    Herrera, F., Herrera-Viedma, E., Verdegay, J.L.: A sequential selection process in group decision-making with linguistic assessment. Information Sciences 85, 223–239 (1995)zbMATHCrossRefGoogle Scholar
  10. 10.
    Herrera, F., Martinez, L., Sanchez, P.J.: Managing non-homogeneous information in group decision making. European Journal of Operational Research 166, 115–132 (2005)zbMATHCrossRefGoogle Scholar
  11. 11.
    Herrera-Viedma, E., Herrera, F., Chiclana, F., Luque, M.: Some issues on consistency of fuzzy preference relations. European Journal of Operational Research 154, 98–109 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Jensen, R.E.: An alternative scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology 28, 317–332 (1984)CrossRefGoogle Scholar
  13. 13.
    Kacprzyk, J.: Group decision making with a fuzzy linguistic majority. Fuzzy Sets and Systems 18, 105–118 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kacprzyk, J., Roubens, M.: Non-Conventional Preference Relations in Decision-Making. Springer, Berlin (1988)zbMATHGoogle Scholar
  15. 15.
    Lee, H.-S.: Optimal consensus of fuzzy opinions under group decision making environment. Fuzzy Sets and Systems 132(3), 303–315 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Lee, H.-S.: On fuzzy preference relation in group decision making. International Journal of Computer Mathematics 82(2), 133–140 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Lee, H.-S.: A Fuzzy Method for Measuring Efficiency Under Fuzzy Environment. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds.) KES 2005. LNCS (LNAI), vol. 3682, pp. 343–349. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Lee, H.-S.: A Fuzzy Multi-criteria Decision Making Model for the Selection of the Distribution Center. In: Wang, L., Chen, K., Ong, Y.S. (eds.) ICNC 2005. LNCS, vol. 3612, pp. 1290–1299. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Luce, R.D., Suppes, P.: Preference utility and subject probability. In: Luce, R.D., et al. (eds.) Handbook of Mathematical Psychology, vol. III, pp. 249–410. Wiley, New York (1965)Google Scholar
  20. 20.
    Orlovvsky, S.A.: Decision making with a fuzzy preference relation. Fuzzy Sets and Systems 1, 155–167 (1978)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Roubens, M.: Some properties of choice functions based on valued binary relations. European Journal of Operational Research 40, 309–321 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Saaty, T.L.: The Analytic Hierarchy Process. McGraw-Hill, New York (1980)zbMATHGoogle Scholar
  23. 23.
    Tanino, T.: Fuzzy preference orderings in group decision-making. Fuzzy Sets and Systems 12, 117–131 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Xu, Z.S.: Generalized chi square method for the estimation of weights. Journal of Optimization Theory and Applications 107, 183–192 (2002)Google Scholar
  25. 25.
    Xu, Z.S.: Two methods for ranking alternatives in group decision-making with different preference information. Information: An International Journal 6, 389–394 (2003)Google Scholar
  26. 26.
    Xu, Z.S., Da, Q.L.: An approach to improving consistency of fuzzy preference matrix. Fuzzy Optimization and Decision Making 2, 3–12 (2003)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Zimmermann, H.J.: Fuzzy Set Theory and Its Applications. Kluwer, Dordrecht (1991)zbMATHGoogle Scholar
  28. 28.
    Zhang, Q., Chen, J.C.H., He, Y.-Q., Ma, J., Zhou, D.-N.: Multiple attribute decision making: approach integrating subjective and objective information. International Journal of Manufacturing Technology and Management 5(4), 338–361 (2003)CrossRefGoogle Scholar
  29. 29.
    Zhang, Q., Chen, J.C.H., Chong, P.P.: Decision consolidation: criteria weight determination using multiple preference formats. Decision Support Systems 38, 247–258 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hsuan-Shih Lee
    • 1
  • Wei-Kuo Tseng
    • 2
  1. 1.Department of Shipping and Transportation ManagementNational Taiwan Ocean University 
  2. 2.Department of Logistics Management,China College of Marine Technology and Commerce, Department of Shipping and Transportation ManagementNational Taiwan Ocean University 

Personalised recommendations