A music phenomenon-inspired algorithm, harmony search was further developed by considering ensemble among music players. The harmony search algorithm conceptualizes a group of musicians together trying to find better state of harmony, where each player produces a sound based on one of three operations (random selection, memory consideration, and pitch adjustment). In this study, one more operation (ensemble consideration) was added to the original algorithm structure. The new operation considers relationship among decision variables, and the value of each decision variable can be determined from the strong relationship with other variables. The improved harmony search algorithm was applied to the design of water distribution network. Results showed that the improved algorithm found better solution than those of genetic algorithm, simulated annealing, and original HS algorithm.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goldberg, D.E.: Genetic Algorithms in Search Optimization and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  2. 2.
    Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by Simulated Annealing. Science 220(4598), 671–680 (1983)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Glover, F.: Heuristic for Integer Programming using Surrogate Constraints. Decision Sciences 8(1), 156–166 (1977)CrossRefGoogle Scholar
  4. 4.
    Dorigo, M., Maniezzo, V., Colorni, A.: The Ant System: Optimization by a Colony of Cooperating Agents. IEEE Transactions on Systems, Man, and Cybernetics-Part B 26(1), 29–41 (1996)CrossRefGoogle Scholar
  5. 5.
    Ha, S., Lowenhaupt, K., Rich, A., Kim, Y., Kim, K.: Crystal Structure of a Junction between B-DNA and Z-DNA Reveals Two Extruded Bases. Nature 437(20), 1183–1186 (2005)CrossRefGoogle Scholar
  6. 6.
    Geem, Z.W., Kim, J.H., Loganathan, G.V.: A New Heuristic Optimization Algorithm: Harmony Search. Simulation 76(2), 60–68 (2001)CrossRefGoogle Scholar
  7. 7.
    Lee, K.S., Geem, Z.W.: A New Structural Optimization Method Based on the Harmony Search Algorithm. Computers and Structures 82(9-10), 781–798 (2004)CrossRefGoogle Scholar
  8. 8.
    Lee, K.S., Geem, Z.W., Lee, S.-H., Bae, K.-W.: The Harmony Search Heuristic Algorithm for Discrete Structural Optimization. Engineering Optimization 37(7), 663–684 (2005)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Geem, Z.W., Park, Y.: Harmony Search for Layout of Rectilinear Branched Networks. WSEAS Transactions on Systems 5(6), 1349–1354 (2006)Google Scholar
  10. 10.
    Afshar, M.H., Marino, M.A.: Application of an Ant Algorithm for Layout Optimization of Tree Networks. Engineering Optimization 38(3), 353–369 (2006)CrossRefGoogle Scholar
  11. 11.
    Geem, Z.W.: Optimal Cost Design of Water Distribution Networks using Harmony Search. Engineering Optimization 38(3), 259–280 (2006)CrossRefGoogle Scholar
  12. 12.
    Geem, Z.W., Tseng, C.-L., Park, Y.: Harmony Search for Generalized Orienteering Problem: Best Touring in China. In: Wang, L., Chen, K., Ong, Y. (eds.) ICNC 2005. LNCS, vol. 3612, pp. 741–750. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Geem, Z.W., Lee, K.S., Park, Y.: Application of Harmony Search to Vehicle Routing. American Journal of Applied Sciences 2(12), 1552–1557 (2005)CrossRefGoogle Scholar
  14. 14.
    Kim, S.H., Yoo, W.S., Oh, K.J., Hwang, I.S., Oh, J.E.: Transient Analysis and Leakage Detection Algorithm Using GA and HS Algorithm for a Pipeline System. Journal of Mechanical Science and Technology 20(3), 426–434 (2006)CrossRefGoogle Scholar
  15. 15.
    Kim, J.H., Geem, Z.W., Kim, E.S.: Parameter Estimation of the Nonlinear Muskingum Model using Harmony Search. Journal of the American Water Resources Association 37(5), 1131–1138 (2001)CrossRefGoogle Scholar
  16. 16.
    Paik, K., Kim, J.H., Kim, H.S., Lee, D.R.: A Conceptual Rainfall-Runoff Model Considering Seasonal Variation. Hydrological Processes 19, 3837–3850 (2005)CrossRefGoogle Scholar
  17. 17.
    Geem, Z.W.: Harmony Search in Water Pump Switching Problem. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005. LNCS, vol. 3612, pp. 751–760. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Rossman, L. A.: EPANET2 Users Manual. US Environmental Protection Agency, Cincinnati, OH, USA (2000) Google Scholar
  19. 19.
    Savic, D.A., Walters, G.A.: Genetic Algorithms for Least-Cost Design of Water Distribution Networks. Journal of Water Resources Planning and Management, ASCE 123(2), 67–77 (1997)CrossRefGoogle Scholar
  20. 20.
    Cunha, M.C., Sousa, J.: Hydraulic Infrastructures Design Using Simulated Annealing. Journal of Infrastructure Systems, ASCE 7(1), 32–39 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Zong Woo Geem
    • 1
  1. 1.Environmental Planning and Management ProgramJohns Hopkins UniversityRockvilleUSA

Personalised recommendations