Monte Carlo Evaluation of the Hausdorff Distance for Shape Matching

  • Arturo Perez-Garcia
  • Victor Ayala-Ramirez
  • Raul E. Sanchez-Yanez
  • Juan-Gabriel Avina-Cervantes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4225)


In this work, we present a Monte Carlo approach to compute Hausdorff distance for locating objects in real images. Objects are considered to be only under translation motion. We use edge points as the features of the model. Using a different interpretation of the Hausdorff distance, we show how image similarity can be measured by using a randomly sub-sampled set of feature points. As a result of computing the Hausdorff distance on smaller sets of features, our approach is faster than the classical one. We have found that our method converges toward the actual Hausdorff distance by using less than 20 % of the feature points. We show the behavior of our method for several fractions of feature points used to compute Hausdorff distance. These tests let us conclude that performance is only critically degraded when the sub-sampled set has a cardinality under 15 % of the total feature points in real images.


  1. 1.
    Corke, P., Hutchinson, S.: Real time vision, tracking and control. In: Proc. of the Int. Conf. on Robotics and Automation (ICRA 2000), San Francisco, CA, vol. 1, pp. 622–629. IEEE, Los Alamitos (2000)Google Scholar
  2. 2.
    Zitova, B., Flusser, J.: Image registration methods: a survey. Image and Vision Computing 21, 977–1000 (2003)CrossRefGoogle Scholar
  3. 3.
    Zhang, D., Lu, G.: Review of shape representation and description techniques. Pattern Recognition 37, 1–19 (2004)zbMATHCrossRefGoogle Scholar
  4. 4.
    Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J.: Comparing images using the Hausdorff distance. IEEE Transactions On Pattern Analysis And Machine Intelligence 15, 850–863 (1993)CrossRefGoogle Scholar
  5. 5.
    Gao, Y., Leung, M.K.H.: Line segment Hausdorff distance on face matching. Pattern Recognition 35, 361–371 (2002)zbMATHCrossRefGoogle Scholar
  6. 6.
    Sebastian, T.B., Kimia, B.B.: Curves vs. skeletons in object recognition. Signal processing 85, 247–263 (2005)zbMATHCrossRefGoogle Scholar
  7. 7.
    Ayala-Ramirez, V., Parra, C., Devy, M.: Active tracking based on Hausdorff matching. In: Conference on Pattern Recognition Proceedings, vol. 4, pp. 706–709 (2000)Google Scholar
  8. 8.
    Odisio, M., Bailly, G., Elisei, F.: Tracking talking faces with shape and appearance models. Speech Communication 44, 63–82 (2004)CrossRefGoogle Scholar
  9. 9.
    Rao, M., Stough, J., Chi, Y.Y., Muller, K., Tracton, G., Pizer, S.M., Chaney, E.L.: Comparison of human and automatic segmentations of kidneys from CT images. International Journal of Radiation Oncology*Biology*Physics 61, 954–960 (2005)CrossRefGoogle Scholar
  10. 10.
    Polat, E., Yeasin, M., Sharma, R.: a 2D-3D model-based object tracking framework. Pattern Recognition 36, 2127–2141 (2003)zbMATHCrossRefGoogle Scholar
  11. 11.
    Cinque, L., Giocca, G., Levialdi, S., Pellicano, A., Schettini, R.: Color-based image retrieval using spatial chromatic histograms. Image and Vision Computing 19, 979–986 (2001)CrossRefGoogle Scholar
  12. 12.
    Thijssen, J.M.: Computational Physics, 1st edn. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  13. 13.
    Boykov, Y., Huttenlocher, D.P.: A new bayesian framework for object recognition. In: Proc. Int. Conf. on Computer Vision and Pattern Recognition CVPR 1999, vol. 2, pp. 517–524. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  14. 14.
    Jian-qiu, J., Zhang-ye, W., Qun-sheng, P.: Constrained branch-and-bound algorithm for image registration. Journal of Zhejiang University Science 6A(suppl. I), 94–99 (2005)Google Scholar
  15. 15.
    Ni, M., Tao, Q., Reichenbach, S.E.: MCMC-based peak template matching for GCxGC. In: IEEE Workshop on Statistical Signal Processing, pp. 514–517 (2003)Google Scholar
  16. 16.
    Olson, C.F.: A probabilistic formulation for Hausdorff matching. In: Proceedings Conference on Computer Vision and Pattern Recognition, pp. 150–156 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Arturo Perez-Garcia
    • 1
  • Victor Ayala-Ramirez
    • 1
  • Raul E. Sanchez-Yanez
    • 1
  • Juan-Gabriel Avina-Cervantes
    • 1
  1. 1.Universidad de Guanajuato FIMEESalamancaMexico

Personalised recommendations