Advertisement

Robustness Analysis of the Neural Gas Learning Algorithm

  • Carolina Saavedra
  • Sebastián Moreno
  • Rodrigo Salas
  • Héctor Allende
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4225)

Abstract

The Neural Gas (NG) is a Vector Quantization technique where a set of prototypes self organize to represent the topology structure of the data. The learning algorithm of the Neural Gas consists in the estimation of the prototypes location in the feature space based in the stochastic gradient descent of an Energy function. In this paper we show that when deviations from idealized distribution function assumptions occur, the behavior of the Neural Gas model can be drastically affected and will not preserve the topology of the feature space as desired. In particular, we show that the learning algorithm of the NG is sensitive to the presence of outliers due to their influence over the adaptation step.

We incorporate a robust strategy to the learning algorithm based on M-estimators where the influence of outlying observations are bounded. Finally we make a comparative study of several estimators where we show the superior performance of our proposed method over the original NG, in static data clustering tasks on both synthetic and real data sets.

Keywords

Neural Gas Robust Learning Algorithm M-estimators 

References

  1. 1.
    Allende, H., Moreno, S., Rogel, C., Salas, R.: Robust self organizing maps. In: Sanfeliu, A., Martínez Trinidad, J.F., Carrasco Ochoa, J.A. (eds.) CIARP 2004. LNCS, vol. 3287, pp. 179–186. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Allende, H., Rogel, C., Moreno, S., Salas, R.: Robust neural gas for the analysis of data with outliers. In: SCCC 2004, pp. 149–155. IEEE-CS Press, Los Alamitos (2004)Google Scholar
  3. 3.
    Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998)Google Scholar
  4. 4.
    Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., Stahel, W.A.: Robust statistics. Wiley Series in Probability and Mathematical Statistics. Wiley, Chichester (1986)zbMATHGoogle Scholar
  5. 5.
    Kohonen, T.: Self-Organizing Maps, Springer Series in Information Sciences, 3rd edn., vol. 30. Springer, Heidelberg (2001)Google Scholar
  6. 6.
    Martinetz, T., Berkovich, S., Schulten, K.: Neural-gas network for vector quantization and its application to time-series prediction. IEEE Trans. on Neural Networks 4(4), 558–568 (1993)CrossRefGoogle Scholar
  7. 7.
    Qin, A., Suganthan, P.: Robust growing neural gas algorithm with application in cluster analysis. Neural Networks 17, 1135–1148 (2004)zbMATHCrossRefGoogle Scholar
  8. 8.
    Salas, R., Moreno, S., Allende, H., Moraga, C.: A robust and flexible model of hierarchical self organizing maps for nonstationary environments. Neurocomputing (to appear, 2006)Google Scholar
  9. 9.
    Seiffert, U., Jain, L. (eds.): Self-organizing neural networks: Recent advances and applications. Studies in Fuzziness and Soft Computing, vol. 78. Springer, Heidelberg (2002)Google Scholar
  10. 10.
    Su, M., Chang, H.: Fast self-organizing feature map algorithm. IEEE Trans. on Neural Networks 11(3), 721–733 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Carolina Saavedra
    • 1
  • Sebastián Moreno
    • 1
  • Rodrigo Salas
    • 1
    • 2
  • Héctor Allende
    • 1
    • 3
  1. 1.Dept. de InformáticaUniversidad Técnica Federico Santa MaríaValparaísoChile
  2. 2.Departamento de ComputaciónUniversidad de Valparaíso 
  3. 3.Facultad de Ciencia y TecnologíaUniversidad Adolfo Ibañez 

Personalised recommendations