Training of Multilayer Perceptron Neural Networks by Using Cellular Genetic Algorithms

  • M. Orozco-Monteagudo
  • A. Taboada-Crispí
  • A. Del Toro-Almenares
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4225)

Abstract

This paper deals with a method for training neural networks by using cellular genetic algorithms (CGA). This method was implemented as software, CGANN-Trainer, which was used to generate binary classifiers for recognition of patterns associated with breast cancer images in a multi-objective optimization problem. The results reached by the CGA with the Wisconsin Breast Cancer Database, and the Wisconsin Diagnostic Breast Cancer Database, were compared with some other methods previously reported using the same databases, proving to be an interesting alternative.

Keywords

Neural networks genetic algorithms cellular automata multi-objective classification 

References

  1. 1.
    Demuh, H.: Neural Network Design. PWS Publishing Company (1996)Google Scholar
  2. 2.
    Man, K.F., Tang, K.S., Kwong, S.: Genetic Algorithms: Concepts and Designs. In: Hierarchical Genetic Algorithm in Computational Intelligence, ch. 7, pp. 155–174. Springer, Heidelberg (1999)Google Scholar
  3. 3.
    Bebis, G., Takis, K.: Coupling Weight Elimination and Genetic Algorithms. In: Proc. of Int. Conf. on Neural Networks, Washington D.C., USA, vol. 2, pp. 1115–1121 (1996)Google Scholar
  4. 4.
    Menczer, F., Belew, R.: Local Selection. In: Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS, vol. 1447, Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Man, K.F., Tang, K.S., Kwong, S.: Genetic Algorithms: Concepts and Designs. In: Hierarchical Genetic Algorithm, ch. 4, pp. 65–74. Springer, Heidelberg (1999)Google Scholar
  6. 6.
    Lafe, O.: Cellular Automata Transforms. Kluwer Academic Publishers, Dordrecht (2000)MATHGoogle Scholar
  7. 7.
    Whitley, D.: An overview of Evolutionary Algorithms: Practical Issues and Common Pitfalls. Information and Software Technology 43(14), 817–831 (2001)CrossRefGoogle Scholar
  8. 8.
    del Toro, A., Orozco, M., Ferrer, C.A., Mendoza, M., Taboada, A.: A Novel Pareto-Based Fitness Assignment Method and its Evaluation in Genetic Programming., I Congreso Nacional de Reconocimiento de Patrones, Havana (2003) ISBN 959-7056-19-4Google Scholar
  9. 9.
    Mangasarian, O.L., Setiono, R., Wolberg, W.H.: Pattern Recognition for Linear Programming. Theory and Applications in Medical Diagnosis, 22–30 (1990)Google Scholar
  10. 10.
    Mangasarian, O.L., Wolberg, W.H.: Cancer Diagnosis Via Linear Programming. SIAM News 23(5), 1–18 (1990)Google Scholar
  11. 11.
    Wolberg, W.H., Mangasarian, O.L.: Multi-Surface Method of Pattern Separation for Medical Diagnosis Applied to Breast Cytology. Proc. of the National Academy of Sciences, U.S.A. 87, 9193–9196 (1990)MATHCrossRefGoogle Scholar
  12. 12.
    Zhang, J.: Selecting Typical Instances in Instance-Based Learning. In: Proc. of the Ninth International Machine Learning Conference, pp. 470–479. Morgan Kaufmann, Aberdeen, Scotland (1992)Google Scholar
  13. 13.
    Bennett, K.P., Mangasarian, O.L.: Neural Network Training via Linear Programming. Advances in Optimization and Parallel Computing, 56–67 (1992)Google Scholar
  14. 14.
    Setiono, R.: Extracting Rules from Pruned Neural Networks for Breast Cancer Diagnosis. Artificial Intelligence in Medicine, 37–51 (1996)Google Scholar
  15. 15.
    Setiono, R., Liu, R.H.: Symbolic Representation of Neural Networks. Computer, 71–77 (1996)Google Scholar
  16. 16.
    Taha, L., Ghosh, J.: Evaluation and Ordering of Rules Extracted from Feed-Forward Networks. In: Proc. IEEE International Conference on Neural Networks, pp. 221–226 (1997)Google Scholar
  17. 17.
    Peña-Reyes, C.A., Sipper, M.: A Fuzzy-Genetic Approach to Breast Cancer Diagnosis. Artificial Intelligence in Medicine, 131–155 (1999)Google Scholar
  18. 18.
    Bagui, S.C., Bagui, S., Pal, K., Pal, N.R.: Breast Cancer Detection using Rank Nearest Neighbor Classification Rules. Pattern Recognition 36, 25–34 (2003)MATHCrossRefGoogle Scholar
  19. 19.
    Street, N.: Cancer Diagnosis and Prognosis via Linear-Programming-Based Machine Learning, Ph.D. Dissertation, University of Wisconsin-Madison, Available as UW Mathematical Programming Technical Report 94-14 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • M. Orozco-Monteagudo
    • 1
  • A. Taboada-Crispí
    • 1
  • A. Del Toro-Almenares
    • 1
  1. 1.Center for Studies on Electronics and Information TechnologiesUniversidad Central de Las VillasSanta ClaraCuba

Personalised recommendations