Corner Detection by Searching Two Class Pattern Substrings

  • Hermilo Sánchez-Cruz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4225)

Abstract

A new method for corner detection is proposed. Previous approaches for detecting corners rely on computing angle functions to find changes of curvature. Generally, those methods employ eight different symbols to represent contour shapes. The method of this work is based on using three symbols of a chain code to find pattern substrings, detecting corners in the contour shape. The method relies on searching for the relationship among neighbor points, finding two basic pattern contour chain elements, requiring few computing power to obtain shape corners.

Keywords

Corner Contour Chain element Freeman chain code Three-symbol chain code Pattern substrings 

References

  1. 1.
    Freeman, H., Davis, L.S.: A Corner-Finding Algorithm for Chain-Coded Curves. IEEE Trans. Comput. 26, 297–303 (1977)CrossRefGoogle Scholar
  2. 2.
    Teh, C.-H., Chin, R.T.: On the Detection of Dominant Points on Digital Curves. IEEE Trans. of Pattern Anal. and Mach. Int. 11(8), 859–872 (1989)CrossRefGoogle Scholar
  3. 3.
    Liu, H.-C., Srinath, M.D.: Corner Detection From Chain-code. Pattern Recognition 23(1/2), 51–68 (1990)CrossRefGoogle Scholar
  4. 4.
    Medioni, G., Yasumoto, Y.: Corner detection and curve representation using cubic B-Splines. Comput. Vision Graphics Image Process. 39, 267–278 (1987)CrossRefGoogle Scholar
  5. 5.
    Beus, H.L., Tiu, S.S.H.: An improved corner detection algorithm based on chain-coded plane curves. Pattern Recognition 20, 291–296 (1987)CrossRefGoogle Scholar
  6. 6.
    Rosenfeld, A., Johnston, E.: Angle detection on digital curves. IEEE Trans. Comput. 22, 875–878 (1973)CrossRefGoogle Scholar
  7. 7.
    Rosenfeld, A., Weszka, J.S.: An improved method of angle detection on diginal curves. IEEE Trans. Comput. 24, 940–941 (1975)CrossRefGoogle Scholar
  8. 8.
    Cheng, F., Hsu, W.: Parallel algorithm for corner finding on digital curves. Pattern Recognition Lett 8, 47–53 (1988)MATHCrossRefGoogle Scholar
  9. 9.
    Freeman, H.: On the Encoding of Arbitrary Geometric Configurations. IRE Trans. on Electr. Comp. 10(2), 260–268 (1961)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Sánchez-Cruz, H., Rodríguez-Dagnino, R.M.: Compressing bi-level images by means of a 3-bit chain code. Optical Engineering. SPIE 44(9), 1–8 (2005)Google Scholar
  11. 11.
    Liu, Y.K., Zalik, B.: An efficient chain code with Huffman coding. Pattern Recognition 38(4), 553–557 (2005)CrossRefGoogle Scholar
  12. 12.
    Bribiesca, E.: A chain code for representing 3D curves. Pattern Recognition 33(5), 755–765 (2000)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hermilo Sánchez-Cruz
    • 1
  1. 1.Centro de Ciencias BásicasUniversidad Autónoma de AguascalientesAguascalientesMéxico

Personalised recommendations