Texture Features and Segmentation Based on Multifractal Approach

  • Mohamed Abadi
  • Enguerran Grandchamp
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4225)

Abstract

In this paper, we use a multifractal approach based on the computation of two spectrums for image analysis and texture segmentation problems. The two spectrums are the Legendre Spectrum, determined by classical methods, and the Large Deviation Spectrum, determined by kernel density estimation. We propose a way for the fusion of these two spectrums to improve textured image segmentation results. An unsupervised k-means is used as clustering approach for the texture classification. The algorithm is applied on mosaic image built using IKONOS images and various natural textures from the Brodatz album. The segmentation obtained with our approach gives better results than the application of each spectrum separately.

Keywords

Multifractal theory multifractal spectrum wavelets texture segmentation high and very high spatial resolution image 

References

  1. 1.
    Haralick, R.M.: Statistical and structural approaches to texture. Proceedings of the IEEE, 786–804 (1979)Google Scholar
  2. 2.
    Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Transactions on systems, Man and Cybernetics, 610–621 (1973)Google Scholar
  3. 3.
    Tuceryan, M.: Moment based texture segmentation. Pattern Recognition Letters, 695–668 (1994)Google Scholar
  4. 4.
    Clark, M., Bovik, A.C.: Texture segmentation using Gabor modulation/demodulation. Pattern Recognition Letters, 261–267 (1987)Google Scholar
  5. 5.
    Turner, M.R.: Texture discrimination by Gabor functions. Biological Cybernetics, 71–82 (1986)Google Scholar
  6. 6.
    Kaplan, L.M.: Extended Fractal Analysis for Texture Classification and Segmentation. IEEE Transaction on Image Processing, 1572–1585 (1999)Google Scholar
  7. 7.
    Levy Vehel, J.: Introduction to the multifractal analysis of images, INRIAGoogle Scholar
  8. 8.
    Sapiro, G., Tannenbaum, A.: on invariant curve evolution and image analysis. Indiana University Mathematics Journal, 985–1010 (1993)Google Scholar
  9. 9.
    Ruderman, D.: The statistics of naturel images. Network 5, 517–548 (1994)MATHCrossRefGoogle Scholar
  10. 10.
    Grazzini, J.: Analyses multiéchelle et multifractale d’image météorologique Application à la detection de zonnes précipitantes (2003)Google Scholar
  11. 11.
    Tuceryan, M.: Texture Analysis. In: Pau, L.F., Wang, P.S.P. (eds.) The Handbook of Pattern Recognition and Computer Vision, World Scientific Publishing Co., Singapore (1993)Google Scholar
  12. 12.
    Julesz, B.: Textons, the Elements of Texture Perception, and Their Interactions. Nature, 91–97 (1981)Google Scholar
  13. 13.
    Chatterjee, S., Chellappa, R.: Maximum likelihood texture segmentation using Gaussian Markov random field models. In: Proc. IEEE Coqf Computer Vision, Graph, Pattern Recog. (1985)Google Scholar
  14. 14.
    Derin, H., Elliot, H.: Modelling and segmentation of noisy and textured images using Gibbs random fields. IEEE Trans on Pattern Anal. and Machine. Intell. 39–55 (1987)Google Scholar
  15. 15.
    Keller, J., Crownover, R., Chen, S.: Texture Description and Segmentation through Fractal Geometry. Computer Vision Graphics and Image Processing, 150–160 (1989)Google Scholar
  16. 16.
    Chaudhuri, B.B., Sarkar, N., Kundu, P.: An Improved Fractal Geometry Based Texture Segmentation Technique. In: Proc. IEE-part EGoogle Scholar
  17. 17.
    Laws, K.I.: Textured Image Segmentation. Ph.D. thesis, University of Southern California (1980)Google Scholar
  18. 18.
    Campbell, F.W., Robson, J.G.: Application of Fourier Analysis to the Visibility of Gratings. Journal of Physiology, 551–566 (1968)Google Scholar
  19. 19.
    Duda, O., Hart, R.E., Pattern, P.: classification and scene analysis. Wiley-Interscience, New York (1973)MATHGoogle Scholar
  20. 20.
    Cheeseman, P., Self, M., Kelly, J., Stutz, J., Taylor, W., Freeman., D.: Bayesian classification. In: Seventh National Conference on Artificial Intelligence, pp. 607–611 (1988)Google Scholar
  21. 21.
    Grayson, M.: The heat equation shrinks embedded plane curves to round points. J. Differential Geometry 26, 285–314 (1987)MATHMathSciNetGoogle Scholar
  22. 22.
    Chaudhuri, B.B., Sarker, N.: An Efficient Approach to Estimate Fractal Dimensions of Textural Images. Pattern recognition, 1035–1041 (1992)Google Scholar
  23. 23.
    Donnay, J.-P., Barnsley, M.J., Longley, P.A.: Remote Sensing and Urban Analysis, GISDATA 9, pp. 3–18. Taylor & Francis, London (2000)Google Scholar
  24. 24.
    Tou, J.T., Gonzalez, R.C.: Pattern Recognition Principles. Addison-Wesley, Reading (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mohamed Abadi
    • 1
  • Enguerran Grandchamp
    • 1
  1. 1.GRIMAAG UAG, Campus de FouilloleFrench West Indies UniversityPointe-à-Pitre Cedex GuadeloupeFrance

Personalised recommendations