GA–SSD–ARC–NLM for Parametric Image Registration

  • Felix Calderon
  • Leonardo Romero
  • Juan Flores
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4225)

Abstract

We present the GA–SSD–ARC–NLM, a new robust parametric image registration technique based on the non–parametric image registration SSD–ARC algorithm. This new algorithm minimizes a new cost function quite different to the original non-parametric SSD-ARC, which explicitly models outlier punishments, using a combination of a genetic algorithm and the Newton–Levenberg–Marquardt method. The performance of the new method was compared against two robust registration techniques: the Lorentzian Estimator and the RANSAC method. Experimental tests using gray level images with outliers (noise) were done using the three algorithms. The goal was to find an affine transformation to match two images; the new method improves the other methods when noisy images are used.

References

  1. 1.
    Zitova, B., Flusser, J.: Image registration methods: A survey. Image and vision computing 21, 977–1000 (2003)CrossRefGoogle Scholar
  2. 2.
    Szeliski, R., Coughlan, J.: Spline-based image registration. Technical Report 94/1, Harvard University, Department of Physics, Cambridge, Ma 02138 (1994)Google Scholar
  3. 3.
    Szeliski, R.: Video mosaics for virtual environments. In: IEEE Computer Graphics and Applications, vol. 16(2), pp. 22–30. IEEE Computer Society Press, Los Alamitos (1996)Google Scholar
  4. 4.
    Vemuri, B.C., Shuangying, H., Sahni, S., Leonard, C.M., Mohr, C., Gilmore, R., Fitzsimmons, J.: An efficient motion estimator with application to medical image registration. Medical Image Analysis 2, 79–98 (1998)CrossRefGoogle Scholar
  5. 5.
    Black, M.J., Rangarajan, A.: On the unification of line processes, outlier rejection, and robust statistics with applications in early vision. International Journal of Computer Vision 19, 57–92 (1996)CrossRefGoogle Scholar
  6. 6.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, University of Oxford (2003)Google Scholar
  7. 7.
    Calderon, F., Marroquin, J.L.: Un nuevo algoritmo para el calculo de flujo optico y su aplicacion al registro de imagenes. Computacion y Sistemas 6, 213–226 (2003)Google Scholar
  8. 8.
    Calderon, F., Romero, L.: Non-parametric image registration as a way to obtain an accurate camera calibration. In: Monroy, R., Arroyo-Figueroa, G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS (LNAI), vol. 2972, pp. 584–591. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equiations. In: Society for Industrial and Applied Mathematics, SIAM, Philadelphia (1996)Google Scholar
  10. 10.
    Hearn, D., Baker, M.P.: Computer Graphics C Version. second edn. Prentice Hall, Inc., Simon and Schuster / A Viacom, Upper Saddle River, New Jersey 07458 (1997)Google Scholar
  11. 11.
    Watt, A.: 3D Computer Graphics, 3rd edn. Pearson Education Limited, London (2000)Google Scholar
  12. 12.
    Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., Stahel, W.A.: Robust Statistics: The Approach Based on Influence Functions. John Wiley and Sons, New York (1986)MATHGoogle Scholar
  13. 13.
    Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithms. John Wiley and Sons, New York (1998)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Felix Calderon
    • 1
  • Leonardo Romero
    • 1
  • Juan Flores
    • 1
  1. 1.División de Estudios de Posgrado. Facultad de Ingeniería EléctricaUniversidad Michoacana de San Nicolás de HidalgoMorelia, MichoacánMéxico

Personalised recommendations