Skeletonization of Digital Objects

  • Gabriella Sanniti di Baja
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4225)

Abstract

Skeletonization is a way to reduce dimensionality of digital objects and is of interest in a number of tasks for image analysis. In this paper, efficient approaches to skeletonization of 2D and 3D digital objects are illustrated.

References

  1. 1.
    Blum, H.: A transformation for extracting new descriptors of shape. In: Wathen-Dunn, W. (ed.) Models for the Perception of Speech and Visual Form, pp. 362–380. M.I.T. Press, Cambridge (1967)Google Scholar
  2. 2.
    Blum, H.: Biological shape and visual science. J. Theor. Biol. 38, 205–287 (1973)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Kong, T.Y., Rosenfeld, A. (eds.): Topological Algorithms for Digital Image Processing. Elsevier, Amsterdam (1996)Google Scholar
  4. 4.
    Chen, C.H., Wang, P.S.P. (eds.): Handbook of Pattern Recognition and Computer Vision, ch. 2.3. World Scientific, Singapore (2005)Google Scholar
  5. 5.
    Borgefors, G.: Distance transformation in digital images. Comput. Vision Graphics Image Process. 34, 344–371 (1986)CrossRefGoogle Scholar
  6. 6.
    Borgefors, G.: On digital distance transform in three dimensions. Computer Vision and Image Understanding 64(3), 368–376 (1996)CrossRefGoogle Scholar
  7. 7.
    Arcelli, C., di Baja, G.S.: Finding local maxima in a pseudo Euclidean distance transform. Comput. Vision Graphics Image Process 43, 361–367 (1988)CrossRefGoogle Scholar
  8. 8.
    Kong, T.Y.: A digital fundamental group. Computers and Graphics 13, 159–166 (1989)CrossRefGoogle Scholar
  9. 9.
    Hilditch, C.J.: Linear skeletons from square cupboards. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence IV, pp. 403–420. Edinburgh University Press, UK (1969)Google Scholar
  10. 10.
    Yokoi, S., Toriwaki, J.I., Fukumura, T.: An analysis of topological properties of digitized binary pictures using local features. Comput. Graphics Image Process. 4, 63–73 (1975)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Arcelli, C., di Baja, G.S.: A thinning algorithm based on prominence detection. Pattern Recognition 13(3), 225–235 (1981)CrossRefGoogle Scholar
  12. 12.
    Arcelli, C., di Baja, G.S.: A contour characterization for multiply connected figures. Pattern Recognition Letters 6, 245–249 (1987)CrossRefGoogle Scholar
  13. 13.
    di Baja, G.S., Thiel, E.: Skeletonization algorithm running on path-based distance maps. Image and Vision Computing 14, 47–57 (1996)CrossRefGoogle Scholar
  14. 14.
    Arcelli, C., di Baja, G.S.: Euclidean skeleton via centre-of-maximal-disc extraction. Image and Vision Computing 11, 163–173 (1993)CrossRefGoogle Scholar
  15. 15.
    Palagyi, K., Kuba, A.: A parallel 3D 12-subiteration thinning algorithm. Graphical Models and Image Processing 61, 199–221 (1999)CrossRefGoogle Scholar
  16. 16.
    Saha, P.K., Chaudhuri, B.B., Majumder, D.D.: A new shape preserving parallel thinning algorithm for 3D digital images. Pattern Recognition 30(12), 1939–1955 (1997)CrossRefGoogle Scholar
  17. 17.
    Borgefors, G., Nyström, I., Sanniti di Baja, G.: Surface skeletonization of volume objects. In: Perner, P., Rosenfeld, A., Wang, P. (eds.) SSPR 1996. LNCS, vol. 1121, pp. 251–259. Springer, Heidelberg (1996)Google Scholar
  18. 18.
    Bertrand, G.: A parallel thinning algorithm for medial surfaces. Pattern Recognition Letters 16, 979–986 (1995)CrossRefGoogle Scholar
  19. 19.
    Borgefors, G., Nyström, I., di Baja, G.S.: Computing skeletons in three dimensions. Pattern Recognition 32(7), 1225–1236 (1999)CrossRefGoogle Scholar
  20. 20.
    Svensson, S., Nyström, I., di Baja, G.S.: Curve skeletonization of surface-like objects in 3D images guided by voxel classification. Pattern Recognition Letters 23(12), 1419–1426 (2002)MATHCrossRefGoogle Scholar
  21. 21.
    Saha, P.K., Chaudhuri, B.B.: Detection of 3D simple points for topology preserving transformations with application to thinning. IEEE Trans. PAMI 16, 1028–1032 (1994)Google Scholar
  22. 22.
    Bertrand, G., Malandain, G.: A new characterization of three-dimensional simple points. Pattern Recognition Letters 15, 169–175 (1994)MATHCrossRefGoogle Scholar
  23. 23.
    di Baja, G.S., Svensson, S.: Surface skeletons detected on the D6 distance transform. In: Perner, P., Rosenfeld, A., Wang, P. (eds.) SSPR 1996. LNCS, vol. 1121, pp. 387–396. Springer, Heidelberg (1996)Google Scholar
  24. 24.
    Svensson, S., di Baja, G.S.: Simplifying curve skeletons in volume images. Computer Vision and Image Understanding 90, 242–257 (2003)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Gabriella Sanniti di Baja
    • 1
  1. 1.Istituto di Cibernetica “E. Caianiello” – CNRPozzuoli (Naples)Italy

Personalised recommendations