Advertisement

Annotation and Provenance Tracking in Semantic Web Photo Libraries

  • Christian Halaschek-Wiener
  • Jennifer Golbeck
  • Andrew Schain
  • Michael Grove
  • Bijan Parsia
  • Jim Hendler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4145)

Abstract

As the volume of digital images available on the Web continues to increase, there is a clear need for more advanced techniques for their effective retrieval and management. In this paper, we present a domain independent framework for both annotating and managing images on the Semantic Web. We introduce a tool that facilitates creating and publishing OWL annotations of image content to the Semantic Web. This is loosely coupled with a Semantic Web portal with provenance tracking. We illustrate the effectiveness of this system with an implementation of the approach and describe a hypothetical use case that resulted in a proof-of-concept designed in collaboration with NASA.

References

  1. 1.
    Addis, M., Boniface, M., Goodall, S., Grimwood, P., Kim, S., Lewis, P., Martinez, K., Stevenson, A.: SCULPTEUR: Towards a new paradigm for multimedia museum information handling. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 582–596. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Brin, S., Page, L.: The Anatomy of a Large Scale Hypertextual Web Search Engine. In: The Proceedings of the 7th International World Wide Web Conference (1998)Google Scholar
  3. 3.
    Dupplaw, D., Dasmahapatra, S., Hu, B., Lewis, P., Shadbolt, N.: Multimedia Distributed Knowledge Management in MIAKT. In: ISWC 2004 Workshop on Knowledge Markup and Semantic Annotation. Hiroshima, Japan (November 2004)Google Scholar
  4. 4.
    Frankel, C., Swain, M., Athitsos, V.: Webseer: An Image Search Engine for the World Wide Web, Tech. Report TR-96-14, Computer Science Dept., Univ. of Chicago (July 1996)Google Scholar
  5. 5.
    Hollink, L., Schreiber, G., Wielemaker, J., Wielinga, B.: Semantic Annotation of Image Collections. In: Knowledge Capture - Knowledge Markup & Semantic Annotation Workshop (2003)Google Scholar
  6. 6.
    Lafon, Y., Bos, B.: Describing and Retrieving Photos Using RDF and HTTP. W3C (2002), Note available at: http://www.w3.org/TR/photo-rdf/
  7. 7.
    Rui, Y., Huang, T.S., Chang, S.F.: Image Retrieval: Current Techniques, Promising Directions, and Open Issues. Journal of Visual Communication and Image Representation 10, 39–62 (1999)CrossRefGoogle Scholar
  8. 8.
    Schreiber, G., Dubbeldam, B., Wielemaker, J., Wielinga, B.: Ontology-Based Photo Annotation. IEEE Intelligent Systems 16(3), 66–74 (2001)CrossRefGoogle Scholar
  9. 9.
    Smith, J.R., Chang, S.F.: An Image and Video Search Engine for the World Wide Web. In: Proc. SPIE 2670 Storage and Retrieval for Still Image and Video Databases IV, SPIE, Bellingham, Wash., pp. 84–95 (1996)Google Scholar
  10. 10.
    Suh, B., Bederson, B.: Semi-Automatic Image Annotation. University of Maryland Computer Science Department Technical Report, HCIL-2004-15, CS-TR-46 (2004)Google Scholar
  11. 11.
    Bloehdorn, S., Petridis, K., Saathoff, C., Simou, N., Tzouvaras, V., Avrithis, Y., Handschuh, S., Kompatsiaris, I., Staab, S., Strintzis, M.G.: Semantic Annotation of Images and Videos for Multimedia Analysis. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 592–607. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Christian Halaschek-Wiener
    • 1
  • Jennifer Golbeck
    • 1
  • Andrew Schain
    • 1
  • Michael Grove
    • 1
  • Bijan Parsia
    • 1
  • Jim Hendler
    • 1
  1. 1.MIND LabUniversity of MarylandCollege ParkUSA

Personalised recommendations