Reasoning About ORA-SS Data Models Using the Semantic Web

  • Yuan Fang Li
  • Jing Sun
  • Gillian Dobbie
  • Hai H. Wang
  • Jun Sun
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4244)


There has been a rapid growth in the use of semistructured data in both web applications and database systems. Consequently, the design of a good semistructured data model is essential. In the relational database community, algorithms have been defined to transform a relational schema from one normal form to a more suitable normal form. These algorithms have been shown to preserve certain semantics during the transformation. The work presented in this paper is the first step towards representing such algorithms for semistructured data, namely formally defining the semantics necessary for achieving this goal. Formal semantics and automated reasoning tools enable us to reveal the inconsistencies in a semistructured data model and its instances. The Object Relationship Attribute model for Semistructured data (ORA-SS) is a graphical notation for designing and representing semistructured data. This paper presents a methodology of encoding the semantics of the ORA-SS notation into the Web Ontology Language (OWL) and automatically verifying the semistructured data design using the OWL reasoning tools. Our methodology provides automated consistency checking of an ORA-SS data model at both the schema and instance levels.


Semistructured Data Semantic Web Ontology Web Language ORA-SS Formal Verification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Apparao, V., Byrne, S., Champion, M., Isaacs, S., Jacobs, I., Hors, A.L., Nicol, G., Robie, J., Sutor, R., Wilson, C., Wood, L.: Document Object Model (DOM) Level 1 Specification (1998),
  2. 2.
    Buneman, P., Davidson, S.B., Fernandez, M.F., Suciu, D.: Adding Structure to Unstructured Data. In: Afrati, F.N., Kolaitis, P.G. (eds.) ICDT 1997. LNCS, vol. 1186, pp. 336–350. Springer, Heidelberg (1996)Google Scholar
  3. 3.
    Goldman, R., Widom, J.: DataGuides: Enabling Query Formulation and Optimization in Semistructured Databases. In: Jarke, M., Carey, M.J., Dittrich, K.R., Lochovsky, F.H., Loucopoulos, P., Jeusfeld, M.A. (eds.) VLDB 1997: Proceedings of 23rd International Conference on Very Large Data Bases, pp. 436–445. Morgan Kaufmann, San Francisco (1997)Google Scholar
  4. 4.
    McHugh, J., Abiteboul, S., Goldman, R., Quass, D., Widom, J.: Lore: A Database Management System for Semistructured Data. SIGMOD Record 26(3), 54–66 (1997)CrossRefGoogle Scholar
  5. 5.
    Dobbie, G., Wu, X., Ling, T., Lee, M.: ORA-SS: Object-Relationship-Attribute Model for Semistructured Data. Technical Report TR 21/00, School of Computing, National University of Singapore, Singapore (2001)Google Scholar
  6. 6.
    Ling, T.W., Lee, M.L., Dobbie, G.: Semistructured Database Design. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  7. 7.
    Chen, Y., Ling, T.W., Lee, M.L.: A Case Tool for Designing XML Views. In: DIWeb 2002: Proceedings of the 2nd International Workshop on Data Integratino over the Web, Toronto, Canada, pp. 47–57 (2002)Google Scholar
  8. 8.
    Ling, T., Lee, M., Dobbie, G.: Applications of ORA-SS: An Object-Relationship-Attribute data model for Semistructured data. In: IIWAS 2001: Proceedings of 3rd International Conference on Information Integration and Web-based Applications and Serives (2001)Google Scholar
  9. 9.
    Wu, X., Ling, T.W., Lee, M.L., Dobbie, G.: Designing Semistructured Databases Using the ORA-SS Model. In: WISE 2001: Proceedings of 2nd International Conference on Web Information Systems Engineering, Kyoto, Japan. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  10. 10.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284(5), 35–43 (2001)CrossRefGoogle Scholar
  11. 11.
    Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From \(\mathcal{SHIQ}\) and RDF to OWL: The making of a web ontology language. J. of Web Semantics 1(1), 7–26 (2003)Google Scholar
  12. 12.
    Haarslev, V., Möller, R.: Practical Reasoning in Racer with a Concrete Domain for Linear Inequations. In: Horrocks, I., Tessaris, S. (eds.) Proceedings of the International Workshop on Description Logics (DL 2002), Toulouse, France, CEUR-WS (2002)Google Scholar
  13. 13.
    Calvanese, D., Giacomo, G.D., Lenzerini, M.: Representing and Reasoning on XML Documents: A Description Logic Approach. Journal of Logic and Computation 9(3), 295–318 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Anutariya, C., Wuwongse, V., Nantajeewarawat, E., Akama, K.: Towards a Foundation for XML Document Databases. In: Bauknecht, K., Madria, S.K., Pernul, G. (eds.) EC-Web 2000. LNCS, vol. 1875, pp. 324–333. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    Conforti, G., Ghelli, G.: Spatial Tree Logics to reason about Semistructured Data. In: SEBD, pp. 37–48 (2003)Google Scholar
  16. 16.
    Bidoit, N., Cerrito, S., Thion, V.: A First Step towards Modeling Semistructured Data in Hybrid Multimodal Logic. Journal of Applied Non-Classical Logics 14(4), 447–475 (2004)zbMATHCrossRefGoogle Scholar
  17. 17.
    Lee, S.U., Sun, J., Dobbie, G., Li, Y.F.: A Z Approach in Validating ORA-SS Data Models. In: 3rd International Workshop on Software Verification and Validation, Manchester, United Kingdom. Electronic Notes in Theoretical Computer Science, vol. 157(1), pp. 95–109 (2005)Google Scholar
  18. 18.
    Wang, L., Dobbie, G., Sun, J., Groves, L.: Validating ORA-SS Data Models using Alloy. In: The Australian Software Engineering Conference (ASWEC 2006), Sydney, Australia, pp. 231–240 (2006)Google Scholar
  19. 19.
    Papakonstantinou, Y., Vianu, V.: Incremental Validation of XML Documents. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS, vol. 2572, pp. 47–63. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Bouchou, B., Alves, M.H.F.: Updates and Incremental Validation of XML Documents. In: Lausen, G., Suciu, D. (eds.) DBPL 2003. LNCS, vol. 2921, pp. 216–232. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Nardi, D., Brachman, R.J.: An introduction to description logics. In: Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.) The description logic handbook: theory, implementation, and applications, pp. 1–40. Cambridge University Press, Cambridge (2003)Google Scholar
  22. 22.
    Brickley, D., Guha, R.V.: Resource description framework (rdf) schema specification 1.0 (2004),
  23. 23.
    Harmelen, F., Patel-Schneider, P.F. (eds.): Reference description of the DAML+OIL ontology markup language. Contributors: T. Berners-Lee, D. Brickley, D. Connolly, M. Dean, S. Decker, P. Hayes, J. Heflin, J. Hendler, O. Lassila, D. McGuinness, L. A. Stein, et. al (March 2001)Google Scholar
  24. 24.
    Zhu, N., Grundy, J., Hosking, J.: Pounamu: a meta-tool for multi-view visual language environment construction. In: Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC 2004), Rome, Italy (2004)Google Scholar
  25. 25.
    Wang, H., Horridge, M., Rector, A., Drummond, N., Seidenberg, J.: Debugging OWL-DL Ontologies: A Heuristic Approach. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 745–757. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Tsarkov, D., Horrocks, I.: Optimised Classification for Taxonomic Knowledge Bases. In: Proceedings of the 2005 International Workshop on Description Logics (DL 2005), Edinburgh, United Kingdom (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yuan Fang Li
    • 1
  • Jing Sun
    • 2
  • Gillian Dobbie
    • 2
  • Hai H. Wang
    • 3
  • Jun Sun
    • 1
  1. 1.School of Computing, National University of SingaporeRepublic of Singapore
  2. 2.Department of Computer ScienceThe University of AucklandNew Zealand
  3. 3.Department of Computer ScienceThe University of ManchesterUnited Kingdom

Personalised recommendations