Automatic Image Description Based on Textual Data

  • Youakim Badr
  • Richard Chbeir
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4244)

Abstract

In the last two decades, images are quite produced in increasing amounts in several application domains. In medicine, for instance, a large number of images of various imaging modalities (e.g. computer tomography, magnetic resonance, nuclear imaging, etc.) are produced daily to support clinical decision-making. Thereby, a fully functional Image Management System becomes a requirement to the end-users. In spite of current researches, the practice has proved that the problem of image management is highly related to image representation. This paper contribution is twofold in facilitating the representation of images and the extraction of its content and context descriptors. In fact, we introduce an expressiveness and extendable XML-based meta-model able to capture the metadata and content-based of images. We also propose an information extraction approach to provide automatic description of image content using related metadata. It automatically generates XML instances, which mark up metadata and salient objects matched by extraction patterns. In this paper, we illustrate our proposal by using the medical domain of lungs x-rays and we show our first experimental results.

Keywords

Image Representation Indexing Method Information Extraction Electronic Dictionaries Specification Language 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wu, J.K., Narasimhalu, A.D., Mehtre, B.M., Lam, C.P., Gao, Y.J.: CORE: A Content-Based Retrieval Engine for Multimedia Information Systems. Multimedia Systems 3, 25–41 (1995)CrossRefGoogle Scholar
  2. 2.
    Berchtold, S., Boehm, C., Braunmueller, B., et al.: Fast Parallel Similarity Search in Multimedia Databases. In: SIGMOD Conference, AZ, USA, pp. 1–12 (1997)Google Scholar
  3. 3.
    Yoshitaka, A., Ichikawa, T.: A Survey on Content-Based Retrieval for Multimedia Databases. IEEE Transactions on Knowledge and Data Engineering 11(1), 81–93 (1999)CrossRefGoogle Scholar
  4. 4.
    Oria, V., Özsu, M.T., Liu, L., et al.: Modeling Images for Content-Based Queries: The DISMA Approach. In: VIS 1997, San Diago, pp. 339–346 (1997)Google Scholar
  5. 5.
    Wu, J.K.: Content-Based Indexing of Multimedia Databases. IEEE TKDE 9(6), 978–989 (1997)Google Scholar
  6. 6.
    Rui, Y., Huang, T.S., Chang, S.F.: Image Retrieval: Past, Present, and Future. Journal of Visual Communication and Image Representation 10, 1–23 (1999)CrossRefGoogle Scholar
  7. 7.
    Stonebraker, M., Brown, P.: Object-Relational DBMSs. Mogan Kaufmann Pub. Inc., San Francisco (1999)Google Scholar
  8. 8.
    Excalibur Image Datablade Module User’s Guide. Informix Press (March 1999) Ver. 1.2, P. No. 000-5356Google Scholar
  9. 9.
    Oracle8i, Visual Information Retrieval Users Guide & Reference. Oracle Press (1999) Release 8.1.5, A67293-01 Google Scholar
  10. 10.
    Grosky, W.I.: Managing Multimedia Information in Database Systems. Communications of the ACM 40(12), 72–80 (1997)CrossRefGoogle Scholar
  11. 11.
    Grosky, W.I., Stanchev, P.L.: An Image Data Model. In: Laurini, R. (ed.) VISUAL 2000. LNCS, vol. 1929, pp. 14–25. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Eakins, J.P., Graham, M.E.: Content-Based Image Retrieval: A Report to the JISC Technology Applications Programme. Inst. for Image Data Research, Univ. of North-umbria at Newcastle (January 1999)Google Scholar
  13. 13.
    Smeulders, A.W.M., Gevers, T., Kersten, M.L.: Crossing the Divide Between Computer Vision and Databases in Search of Image Databases. In: Visual Database Systems Conf., Italy, pp. 223–239 (1998)Google Scholar
  14. 14.
    Sheth, A., Klas, W.: Multimedia Data Management: Using Metadata to Integrate and Apply Digital Media. McGraw-Hill, San Francisco (1998)Google Scholar
  15. 15.
    Badr, Y.: Xtractor: A Light Wrapper For XML Paragraph-Centric Documents. In: Proceedings of the 2005 International Conference on Signal-Image Technology & Internet - Based Systems (IEEE - SITIS 2005), Yaoundé Cameroon, pp. 150–155 (2005)Google Scholar
  16. 16.
    Veltkamp, R.C., Tanase, M.: Content-Based Image Retrieval Systems: A Survey, Technical Report UU-cs-2000-34, Department of Computer Science, Utrecht University (October 2000)Google Scholar
  17. 17.
    Oria, V., Özsu, M.T., Iglinski, P., et al.: DISMA: An Object Oriented Approach to Developing an Image Database System, ICDE 2000. In: 16th Int. Conf. on Data Engineering, San Diego, California (February 2000)Google Scholar
  18. 18.
    Oria, V., Özsu, M.T., Iglinski, P., et al.: DISMA: A Distributed and Interoperable Image Database System. In: Proc. of ACM SIGMOD Int. Conf. on Management of Data, SIGMOD 2000, Dallas, Texas (2000)Google Scholar
  19. 19.
    Duncan, J.S., Ayache, N.: Medical Image Analysis: Progress over Two Decades and the Challenges Ahead. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(1) (January 2000)Google Scholar
  20. 20.
    Soderland, S., Fisher, D., Aseltine, J., et al.: Issues in inductive learning of domain-specic text extraction rules. In: Learning for Natural Language Processing, pp. 290–301. Springer, Heidelberg (1996)Google Scholar
  21. 21.
    Allen, J.E.: Maintaining Knowledge about Temporal Intervals. Communications of ACM 26, 832–843 (1983)MATHCrossRefGoogle Scholar
  22. 22.
    Chbeir, R., Favetta, F.: A Global Description of Medical Image with a High Precision. In: IEEE International Symposium on Bio-Informatics and Biomedical Engineering IEEE-BIBE 2000, Washington D.C., USA, November 8th-10th, pp. 289–296. IEEE Computer Society, Los Alamitos (2000)CrossRefGoogle Scholar
  23. 23.
    Chu, W.W., Hsu, C.C., Cárdenas, A.F., et al.: Knowledge-Based Image Retrieval with Spatial and Temporal Constraints. IEEE Transactions on Knowledge and Data Engineering 10(6), 872–888 (1998)CrossRefGoogle Scholar
  24. 24.
    Mechkour, M.: EMIR2. An Extended Model for Image Representation and Retrieval. In: Database and Expert system Applications (DEXA), pp. 395–404 (September 1995)Google Scholar
  25. 25.
    Trayser, G.: Interactive System for Image Selection, Digital Imaging Unit Center of Medical Informatics University Hospital of Geneva, http://www.expasy.ch/UIN/html1/projects/isis/isis.html
  26. 26.
    Narasimhalu, A.D.: Multimedia Databases, Multimedia Systems, vol. 4, pp. 226–249. Springer, Heidelberg (1996)Google Scholar
  27. 27.
    Lu, G.: Multimedia Database Management Systems. Artech House Computing library (1999) ISBN 0-089006-342-7Google Scholar
  28. 28.
    Hopcroft, J.E., Ullman, J.D.: Introduction to automata theory languages, and computation. Addison-Wesley Publishing Co., Reading (1979)MATHGoogle Scholar
  29. 29.
    Hume, A.: A tale of two greps. Software Practice and Experience 18(11), 1063–1072 (1988)CrossRefGoogle Scholar
  30. 30.
    Wall, L., Christensen, T., Schwartz, R.L.: Programming Perl, 2nd edn. O’Reilly & Associates, Inc., Sebastopol (1996)MATHGoogle Scholar
  31. 31.
    Smith, D.J., Lopez, M.: Information extraction for semi-structured documents. In: Proc. Workshop on Management of Semistructured Data (May 1997)Google Scholar
  32. 32.
    Hammer, J., Garcia-Molina, H., Cho, J., et al.: Extracting Semi structured Information from the Web. In: Proceedings of the Workshop on Management of Semistructured Data, Tucson, Arizona (May 1997)Google Scholar
  33. 33.
    Hsu, C.N., Dung, M.T.: Generating finite-state transducers for semistructured data extraction from the web. Information Systems, Special Issue on Semistructured Data 23(8), 521–538 (1998)Google Scholar
  34. 34.
    Ashish, N., Knoblock, C.: Wrapper Generation for Semi-structured Internet Sources. In: ACM SIGMOD Workshop on Management of Semistructured Data, Tucson, Arizona (1997)Google Scholar
  35. 35.
    Kuhlins, S., Tredwell, R.: Toolkits for Generating Wrappers: A survey. In: Aksit, M., Mezini, M., Unland, R. (eds.) NODe 2002. LNCS, vol. 2591. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  36. 36.
    Sankar, S., Viswanadha, S., Duncan, R.: Java Compiler Compiler (JavaCC)Google Scholar
  37. 37.
    The Java Parser Generator. Located at: http://www.suntest.com/JavaCC/
  38. 38.
    Savarese, D.F.: OROmatcher - Regular Expressions for Java, http://www.savarese.org/
  39. 39.
    Karttunen, L., Chanod, J.-P., Grefenstette, G., Schiller, A.: Regular expressions for language engineering. Journal of national language engineering 2(4), 305–328 (1996)CrossRefGoogle Scholar
  40. 40.
    van Noord, G., Gerdemann, D.: An Extendible Regular Expression Compiler for Finite-State Approaches in Natural Language Processing. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS, vol. 2214, p. 122. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  41. 41.
    MPEG-7 Overview (visited at, 26/02/2006), http://www.chiariglione.org/MPEG/standards/mpeg-7/mpeg-7.htm
  42. 42.
    Chang, S.K., Shi, Q.Y., Yan, C.W.: Iconic Indexing by 2-D Strings. IEEE-Transactions-on-Pattern-Analysis-and-Machine-Intelligence PAMI-9(3), 413–428 (1987)CrossRefGoogle Scholar
  43. 43.
    Chang, S.K., Jungert, E.: Human- and System-Directed Fusion of Multimedia and Multimodal Information using the Sigma-Tree Data Model. In: Leung, C. (ed.) Visual Information Systems. LNCS, vol. 1306, pp. 21–28. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  44. 44.
    Huang, P.W., Jean, Y.R.: Using 2D C+-Strings as spatial knowledge representation for image database management systems. Pattern Recognition 27(9), 1249–1257 (1994)CrossRefGoogle Scholar
  45. 45.
    Egenhofer, M.: Query Processing in Spatial Query By Sketch. Journal of Visual Language and Computing 8(4), 403–424 (1997)CrossRefGoogle Scholar
  46. 46.
    El-kwae, M.A., Kabuka, M.R.: A robust framework for Content-Based Retrieval by Spatial Similarity in Image Databases. ACM Transactions on Information Systems 17(2), 174–198 (1999)CrossRefGoogle Scholar
  47. 47.
    Peuquet, D.J.: The use of spatial relationships to aid spatial database retrieval. In: Proc. Second Int. Symp. on Spatial Data Handling, Seattle, pp. 459–471 (1986)Google Scholar
  48. 48.
    Egenhofer, M., Frank, A., Jackson, J.: A Topological Data Model for Spatial Databases. In: Buchmann, A., Smith, T.R., Wang, Y.-F., Günther, O. (eds.) SSD 1989. LNCS, vol. 409, pp. 271–286. Springer, Heidelberg (1990)Google Scholar
  49. 49.
    Gross, M.: The Use of Finite Automata in the Lexical Representation of Natural Language. In: Gross, M., Perrin, D. (eds.) LITP 1987. LNCS, vol. 377, pp. 34–50. Springer, Heidelberg (1989)Google Scholar
  50. 50.
    Courtois, B.: Le dictionnaire electronique des mots simples. In: Les dctionnaires electroniques. Langue francaise no 87. Larousse, Paris (1990)Google Scholar
  51. 51.
    Silberztein, M.: INTEX: a Finite State Transducer toolbox. In: Theoretical Computer Science #231:1. Elsevier Science, Amsterdam (1999)Google Scholar
  52. 52.
    Subramaniam, L.V., Mukherjea, S., Kankar, P., Srivastava, B., Batra, V.S., Kamesam, P.V., Kothari, R.: Information Extraction from Biomedical Literature: Methodology, Evaluation and an Application, IBM India Research Lab, New Delhi, IndiaGoogle Scholar
  53. 53.
    Fukuda, K., Tsunoda, T., Tamura, A., Takagi, T.: Toward Information Extraction: Identify-ing Protein Names from Biological Papers. In: Proceedings of the Pacific Symposium on Biocomputing, Hawaii, pp. 707–718 (1998)Google Scholar
  54. 54.
    Daniel, Q., Hesham, A.: Ontology Specific Data Mining Based on Dynamic Grammars. In: Bioinformatics conference, Stanford, CA, August 16-19 (2004)Google Scholar
  55. 55.
    Embley, D.W., Campbell, D.M., Smith, R.D.: Ontology-Based Extraction and Structuring of Information from Data-Rich Unstructured Documents. In: Proceedings of CIKM 1998, Bethesda, Maryland (1998)Google Scholar
  56. 56.
    Bricon-Souf, N., Beuscart-Zéphir, M.C., Watbled, L., Laforest, F., Karadimas, H., Anceaux, F., Flory, A., Lepage, E., Beuscart, R.: Technologies de l’Information Pour l’Hospitalisation A Domicile: le projet TIPHAD, Télémédecine et e-Santé, Collection Infor-matique et Santé, Paris, vol. 13. Springer- Verlag (2002)Google Scholar
  57. 57.
    Unitex Home page (last visited, March 12th 2006), Available at: http://www-igm.univ-mlv.fr/~unitex/
  58. 58.
    Frakes, W.B., Baeza-Yates, R.: Information Retrieval: Data Structures & Algorithms. Prentice Hall, Englewood Cliffs (1992)Google Scholar
  59. 59.
    Appelt, D.E., Israel, D.J.: Introduction to Information Extraction Technology. In: Tutorial for IJCAI 1999, Stockholm (1999)Google Scholar
  60. 60.
    Charniak, E.: Statistical Language Learning, p. 192. MIT Press, Cambridge (1994)Google Scholar
  61. 61.
    Brill, E., Church, K.: Proceedings of the Conference on Empirical Methods in Natural Language Processing. University of Pennsylvania. Philadelphia, PA (1996)Google Scholar
  62. 62.
    Marcus, M., Santorini, B., Marcinkiewicz, M.: Building a large annotated corpus of English. Computational Linguistics 19(2), 313–330 (1993)Google Scholar
  63. 63.
    Freitag, D., McCallum, A.: Information extraction with HMMs and shrinkage. In: Proceedings of the AAAI 1999 Workshop on Machine Learning for Information Extraction, pp. 31–36 (1999)Google Scholar
  64. 64.
    Miikkulainen, R.: Subsymbolic Natural Language Processing: An Integrated Model of Scripts, Lexicon, and Memory. MIT Press, Cambridge (1993)Google Scholar
  65. 65.
    Brill, E.: Transformation-based error-driven learning and natural language processing: A case study in part-of-speech tagging. Computational Linguistics 21(4), 543–565 (1995)Google Scholar
  66. 66.
    Magerman, D.M.: Statistical decision-tree models for parsing. In: Proceedings of the 33rd Annual Meeting of the Association for Computational Lenguistics, Cambridge, pp. 276–283 (1995)Google Scholar
  67. 67.
    Wermter, S., Rilo, E., Scheler, G.: Connectionist, Statistical, and Symbolic Approaches to Learning for Natural Language Processing, pp. 315–328. Springer, Berlin (1996)Google Scholar
  68. 68.
    Lavrac, N., Dzeroski, S.: Inductive Logic Programming: Techniques and Applications. Ellis Horwood (1994)Google Scholar
  69. 69.
    Huffman, S.: Learning information extraction patterns from examples. In: Workshop on Learning for Natural Language Processing, IJCAI 1995, Canada, pp. 246–260 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Youakim Badr
    • 1
  • Richard Chbeir
    • 2
  1. 1.PRISMa – INSA de LyonVilleurbanneFrance
  2. 2.LE2I – Bourgogne UniversityDijonFrance

Personalised recommendations