Semantic Information Retrieval in the COMPASS Location System

  • Frank Kargl
  • Günter Dannhäuser
  • Stefan Schlott
  • Jürgen Nagler-Ihlein
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4239)


In our previous work, we have described the COMPASS location system that uses multiple information sources to determine the current position of a node. The raw output of this process is a location in geo-coordinates, which is not suitable for many applications. In this paper we present an extension to COMPASS, the so called Translator, that can provide facts about the location like city name, address, room number, etc. to the application. These facts are represented in the Semantic Web RDF/XML language and stored on distributed Geo RDF Servers. The main focus of this paper is a location-based service discovery mechanism which allows a node to find all services that can provide facts about its current location. This discovery service is built upon a structured Peer-to-Peer system implementing a distributed hash table.


Probability Distribution Function Resource Description Framework Service Discovery Distribute Hash Table Partition Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kargl, F., Bernauer, A.: The COMPASS location system. In: Strang, T., Linnhoff-Popien, C. (eds.) LoCA 2005. LNCS, vol. 3479, pp. 105–112. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Angermann, M., Kammann, J., Robertson, P., Steinga¯, A., Stranga, T.: Software representation for heterogeneous location data sources within a probabilistic framework. In: International Symposium on Location Based Services for Cellular Users, Locellus, pp. 107–118 (2001)Google Scholar
  3. 3.
    Wendlandt, K., Ouhmich, A., Angermann, M., Robertson, P.: Implementation of soft location on mobile devices. In: International Symposium on Indoor Localisation and Position Finding, InLoc 2002, Bonn, Germany (2002)Google Scholar
  4. 4.
    W3C: The resource description framework (rdf) (2005),
  5. 5.
    W3C: Rdql - a query language for rdf (2004),
  6. 6.
    Ahn, H.K., Mamoulis, N., Wong, H.M.: A survey on multidimensional access methods. Technical report, Institute of Infomation and Computing Sciences, Utrecht University, The Netherlands (2001)Google Scholar
  7. 7.
    Adjie-Winoto, W., Schwartz, E., Balakrishnan, H., Lilley, J.: The design and implementation of an intentional naming system. In: SOSP 1999: Proceedings of the seventeenth ACM symposium on Operating systems principles, pp. 186–201. ACM Press, New York (1999)CrossRefGoogle Scholar
  8. 8.
    Czerwinski, S.E., Zhao, B.Y., Hodes, T.D., Joseph, A.D., Katz, R.H.: An architecture for a secure service discovery service. In: MobiCom 1999: Proceedings of the 5th annual ACM/IEEE international conference on Mobile computing and networking, pp. 24–35. ACM Press, New York (1999)CrossRefGoogle Scholar
  9. 9.
    Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek, F., Balakrishnan, H.: Chord: a scalable peer-to-peer lookup protocol for internet applications. IEEE/ACM Trans. Netw. 11(1), 17–32 (2003)CrossRefGoogle Scholar
  10. 10.
    Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J.: Handling churn in a dht. In: Proceedings of the USENIX Annual Technical Conference (2004)Google Scholar
  12. 12.
    Rhea, S., Godfrey, B., Karp, B., Kubiatowicz, J., Ratnasamy, S., Shenker, S., Stoica, I., Yu, H.: Opendht: A public dht service and its uses. In: Proceedings of ACM SIGCOMM 2005 (2005)Google Scholar
  13. 13.
    Bavier, A., Bowman, M., Chun, B., Culler, D., Karlin, S., Muir, S., Peterson, L., Roscoe, T., Mike Wawrzoniak, T.S.: Operating system support for planetary-scale services. In: Proceedings of the First Symposium on Network Systems Design and Implementation (NSDI) (2004)Google Scholar
  14. 14.
    Böhm, C., Klump, G., Kriegel, H.-P.: XZ-ordering: A space-filling curve for objects with spatial extension. In: Güting, R.H., Papadias, D., Lochovsky, F.H. (eds.) SSD 1999. LNCS, vol. 1651, pp. 75–90. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Finkel, R., Bentley, J.: Quad-trees: a data structure for retrieval on composite keys. Acta Informatica 4, 1–9 (1974)zbMATHCrossRefGoogle Scholar
  16. 16.
    Kedem, G.: The Quad-CIF tree: A Data Structure for Hierarchical On-line Algorithms. In: Proceedings of the Nineteenth Design Automation Conference, Las Vegas, pp. 352–357 (1982)Google Scholar
  17. 17.
    Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: SIGMOD 1984: Proceedings of the 1984 ACM SIGMOD international conference on Management of data, pp. 47–57. ACM Press, New York (1984)CrossRefGoogle Scholar
  18. 18.
    Rhea, S., Chun, B.G., Kubiatowicz, J., Shenker, S.: Fixing the embarrassing slowness of opendht on planetlab. In: Proceedings of USENIX WORLDS 2005 (2005)Google Scholar
  19. 19.
    Mondal, A., Lifu, Y., Kitsuregawa, M.: P2PR-tree: An R-tree-based spatial index for peer-to-peer environments. In: Lindner, W., Mesiti, M., Türker, C., Tzitzikas, Y., Vakali, A.I. (eds.) EDBT 2004. LNCS, vol. 3268, pp. 516–525. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Tanin, E., Harwood, A., Samet, H.: Indexing distributed complex data for complex queries. In: Proceedings of the National Conference on Digital Government Research, Seattle, WA, pp. 81–91 (2004)Google Scholar
  21. 21.
    Tanin, E., Harwood, A., Samet, H., Nutanong, S., Truong, M.T.: A serverless 3d world. In: GIS 2004: Proceedings of the 12th annual ACM international workshop on Geographic information systems, pp. 157–165. ACM Press, New York (2004)CrossRefGoogle Scholar
  22. 22.
    Tanin, E., Harwood, A., Samet, H.: A distributed quadtree index for peer-to-peer settings. In: ICDE 2005: Proceedings of the 21st International Conference on Data Engineering (ICDE 2005), pp. 254–255. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  23. 23.
    Tanin, E., Nayar, D., Samet, H.: An efficient nearest neighbor algorithm for p2p settings. In: dg.o2005: Proceedings of the 2005 national conference on Digital government research, Digital Government Research Center, pp. 21–28 (2005)Google Scholar
  24. 24.
    Chawathe, Y., Ramabhadran, S., Ratnasamy, S., LaMarca, A., Shenker, S., Hellerstein, J.: A case study in building layered dht applications. In: SIGCOMM 2005: Proceedings of the 2005 conference on Applications, technologies, architectures, and protocols for computer communications, pp. 97–108. ACM Press, New York (2005)CrossRefGoogle Scholar
  25. 25.
    Demirbas, M., Ferhatosmanoglu, H.: Peer-to-peer spatial queries in sensor networks. In: Proceedings of the 3rd IEEE International Conference on Peer-to-Peer Computing (P2P 2003), Linkoping, Sweden (2003)Google Scholar
  26. 26.
    Cai, M., Frank, M., Chen, J., Szekely, P.: MAAN: A Multi-Attribute Addressable Network for Grid Information Services. In: 4th International Workshop on Grid Computing (GRID 2003), Phoenix, AZ, USA, pp. 184–191. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  27. 27.
    Ballintijn, G., Van Steen, M., Tanenbaum, A.S.: Exploiting Location Awareness for Scalable Location-Independent Object IDs. In: Proceedings of the Fifth Annual ASCI Conference, Heijen, The Netherlands, pp. 321–328 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Frank Kargl
    • 1
  • Günter Dannhäuser
    • 1
  • Stefan Schlott
    • 1
  • Jürgen Nagler-Ihlein
    • 1
  1. 1.Media Informatics InstituteUlm UniversityUlmGermany

Personalised recommendations