Quantification of Growth and Motion Using Non-rigid Registration

  • D. Rueckert
  • R. Chandrashekara
  • P. Aljabar
  • K. K. Bhatia
  • J. P. Boardman
  • L. Srinivasan
  • M. A. Rutherford
  • L. E. Dyet
  • A. D. Edwards
  • J. V. Hajnal
  • R. Mohiaddin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4241)


Three-dimensional (3D) and four-dimensional (4D) imaging of dynamic structures is a rapidly developing area of research in medical imaging. Non-rigid registration plays an important role for the analysis of these datasets. In this paper we will show some of the work of our group using non-rigid registration techniques for the detection of temporal changes such as growth in brain MR images. We will also show how non-rigid registration can be used to analyze the motion of the heart from cardiac MR images.


Image Registration Cardiac Motion Epicardial Surface Computer Assist Tomography Medical Image Registration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aljabar, P., Bhatia, K.K., Hajnal, J.V., Boardman, J., Srinivasan, L., Rutherford, M., Dyet, L., Edwards, D., Rueckert, D.: Analysis of growth in the developing brain using non-rigid registration. In: IEEE International Symposium on Biomedical Imaging (page in press, 2006)Google Scholar
  2. 2.
    Amini, A.A., Chen, Y., Curwen, R.W., Mani, V., Sun, J.: Coupled B-snake grids and constrained thin-plate splines for analysis of 2D tissue deformations from tagged MRI. IEEE Transactions on Medical Imaging 17(3), 344–356 (1998)CrossRefGoogle Scholar
  3. 3.
    Amini, A.A., Chen, Y., Elayyadi, M., Radeva, P.: Tag surface reconstruction and tracking of myocardial beads from SPAMM-MRI with parametric B-spline surfaces. IEEE Transactions on Medical Imaging 20(2), 94–103 (2001)CrossRefGoogle Scholar
  4. 4.
    Amini, A.A., Curwen, R.W., Gore, J.C.: Snakes and splines for tracking non-rigid heart motion. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1065, pp. 251–261. Springer, Heidelberg (1996)Google Scholar
  5. 5.
    Axel, L., Dougherty, L.: Heart wall motion: Improved method of spatial modulation of magnetization for MR imaging. Radiology 172(2), 349–360 (1989)Google Scholar
  6. 6.
    Axel, L., Dougherty, L.: MR imaging of motion with spatial modulation of magnetization. Radiology 171(3), 841–845 (1989)Google Scholar
  7. 7.
    Botting, N.F.: Psychological and educational outcome of very low birthweight children at 12 years. PhD thesis, University of Liverpool (1997)Google Scholar
  8. 8.
    Catmull, E., Clark, J.: Recursively generated B-spline surfaces on arbitrary topological meshes. Computer Aided Design 10(6), 350–355 (1978)CrossRefGoogle Scholar
  9. 9.
    Chandrashekara, R., Mohiaddin, R.H., Rueckert, D.: Analysis of myocardial motion in tagged MR images using nonrigid image registration. In: Proceedings of the SPIE International Symposium on Medical Imaging: Image Processing, pp. 1168–1179 (2002)Google Scholar
  10. 10.
    Chandrashekara, R., Mohiaddin, R.H., Rueckert, D.: Analysis of myocardial motion and strain patterns using a cylindrical B-spline transformation model. In: Ayache, N., Delingette, H. (eds.) IS4TM 2003. LNCS, vol. 2673. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Chandrashekara, R., Mohiaddin, R.H., Rueckert, D.: Analysis of 3-D myocardial motion in tagged MR images using nonrigid image registration. IEEE Transactions on Medical Imaging 23(10), 1245–1250 (2004)CrossRefGoogle Scholar
  12. 12.
    Chandrashekara, R., Mohiaddin, R.H., Rueckert, D.: Cardiac motion tracking in tagged MR images using a 4D B-spline motion model and nonrigid image registration. In: Isbi, Arlington, VA, USA, April 2004. IEEE, Los Alamitos (2004)Google Scholar
  13. 13.
    Chandrashekara, R., Rao, A., Sanchez-Ortiz, G.I., Mohiaddin, R.H., Rueckert, D.: Construction of a statistical model for cardiac motion analysis using nonrigid image registration. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 599–610. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Doo, D., Sabin, M.A.: Behaviour of recursive subdivision surfaces near extraordinary points. Computer Aided Design 10(6), 356–360 (1978)CrossRefGoogle Scholar
  15. 15.
    Dougherty, L., Asmuth, J.C., Blom, A.S., Axel, L., Kumar, R.: Validation of an optical flow method for tag displacement estimation. IEEE Transactions on Medical Imaging 18(4), 359–363 (1999)CrossRefGoogle Scholar
  16. 16.
    Thom, T., et al.: Heart disease and stroke statistics – 2006 update: A report from the american heart association statistics committee and stroke statistics subcommittee. Circulation 113, e85–e151 (2006)CrossRefGoogle Scholar
  17. 17.
    Fishcer, S.E., McKinnon, G.C., Maier, S.E., Boesiger, P.: Improved myocardial tagging contrast. Magnetic Resonance in Medicine 30(2), 191–200 (1993)CrossRefGoogle Scholar
  18. 18.
    Fox, N.C., Crum, W.R., Scahill, R.I., Stevens, J.M., Janssen, J.C., Rossor, M.N.: Imaging of onset and progression of Alzheimer’s disease with voxel-compression mapping of serial magnetic resonance images. Lancet 358, 201–205 (2001)CrossRefGoogle Scholar
  19. 19.
    Freeborough, P.A., Fox, N.C.: Modeling brain deformations in Alzheimer disease by fluid registration of serial 3D MR images. Journal of Computer Assisted Tomography 22(5), 838–843 (1998)CrossRefGoogle Scholar
  20. 20.
    Gupta, S.N., Prince, J.L.: On variable brightness optical flow for tagged MRI. In: Information Processing in Medical Imaging, pp. 323–334. Kluwer, Dordrecht (1995)Google Scholar
  21. 21.
    Hajnal, J.V., Hill, D.L.G., Hawkes, D.J.: Medical Image Registration. CRC Press, Boca Raton (2001)CrossRefGoogle Scholar
  22. 22.
    Hajnal, J.V., Saeed, N., Soar, E.J., Oatridge, A., Young, I.R., Bydder, G.M.: A registration and interpolation procedure for subvoxel matching of serially acquired MR images. Journal of Computer Assisted Tomography 19(2), 289–296 (1995)CrossRefGoogle Scholar
  23. 23.
    Hajnal, J.V., Saeed, N., Oatridge, A., Williams, E.J., Young, I.R., Bydder, G.M.: Detection of subtle brain changes using subvoxel registration and subtraction of serial MR images. Journal of Computer Assisted Tomography 19(5), 677–691 (1995)CrossRefGoogle Scholar
  24. 24.
    Kramer, C.M., Reichek, N., Ferrari, V.A., Theobald, T., Dawson, J., Axel, L.: Regional heterogeneity of function in hypertrophic cardiomyopathy. Circulation 90(1), 186–194 (1994)Google Scholar
  25. 25.
    MacCracken, R., Joy, K.I.: Free-form deformations with lattices of arbitrary topology. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 181–188. ACM Press, New York (1996)CrossRefGoogle Scholar
  26. 26.
    Maintz, J.B.A., Viergever, M.A.: A survey of medical image registration. Medical Image Analysis 2(1), 1–36 (1998)CrossRefGoogle Scholar
  27. 27.
    Marlow, N., Wolke, D., Bracewell, M.A., Samara, M.: Neurologic and developmental disability at six years of age after extremely preterm birth. New England Journal of Medicine 352(1), 9–19 (2005)CrossRefGoogle Scholar
  28. 28.
    O’Dell, W.G., Moore, C.C., Hunter, W.C., Zerhouni, E.A., McVeigh, E.R.: Three-dimensional myocardial deformations: Calculation with displacement field fitting to tagged MR images. Radiology 195(3), 829–835 (1995)Google Scholar
  29. 29.
    Osman, N.F., Kerwin, W.S., McVeigh, E.R., Prince, J.L.: Cardiac motion tracking using cine harmonic phase (HARP) magnetic resonance imaging. Magnetic Resonance in Medicine 42, 1048–1060 (1999)CrossRefGoogle Scholar
  30. 30.
    Osman, N.F., McVeigh, E.R., Prince, J.L.: Imaging heart motion using harmonic phase MRI. IEEE Transactions on Medical Imaging 19(3), 186–202 (2000)CrossRefGoogle Scholar
  31. 31.
    Palmon, L.C., Reichek, N., Yeon, S.B., Clark, N.R., Brownson, D., Hoffman, E., Axel, L.: Intramural myocardial shortening in hypertensive left ventricular hypertrophy with normal pump function. Circulation 89(1), 122–131 (1994)Google Scholar
  32. 32.
    Pan, L., Lima, J.A.C., Osman, N.F.: Fast tracking of cardiac motion using 3D-HARP. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 611–622. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  33. 33.
    Paus, T., Zijdenbos, A., Worsley, K., Collins, D.L., Blumenthal, J., Giedd, J.N., Rapoport, J.L., Evans, A.C.: Structural maturation of neural pathways in children and adolescents: In vivo study. Science 283, 1908–1911 (1999)CrossRefGoogle Scholar
  34. 34.
    Petitjean, C., Rougon, N., Preteux, F., Cluzel, P., Grenier, P.: Measuring myocardial deformation from MR data using information-theoretic nonrigid registration. In: Proceedings of the Second International Workshop on Functional Imaging and Modeling of the Heart, Lyon, France, June 2003, pp. 162–172 (2003)Google Scholar
  35. 35.
    Prince, J.L., McVeigh, E.R.: Optical flow for tagged MR images. In: Proceedings of the 1991 International Conference on Acoustics, Speech, and Signal Processing, pp. 2441–2444 (1991)Google Scholar
  36. 36.
    Rey, D., Subsol, G., Delingette, H., Ayache, N.: Automatic detection and segmentation of evolving processes in 3D medical images: Application to multiple sclerosis. In: Kuba, A., Sámal, M., Todd-Pokropek, A. (eds.) IPMI 1999. LNCS, vol. 1613, pp. 154–167. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  37. 37.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: Application to breast MR images. IEEE Transactions on Medical Imaging 18(8), 712–721 (1999)CrossRefGoogle Scholar
  38. 38.
    Studholme, C., Cardenas, V., Schuff, N., Rosen, H., Miller, B., Weiner, M.: Detecting spatially consistent structural differences in alzheimer’s and fronto temporal dementia using deformation morphometry. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 41–48. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  39. 39.
    Studholme, C., Hill, D.L.G., Hawkes, D.J.: An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognition 32(1), 71–86 (1998)CrossRefGoogle Scholar
  40. 40.
    Thompson, P.M., Giedd, J.N., Woods, R.P., MacDonald, D., Evans, A.C., Toga, A.W.: Growth patterns in the developing brain detected by continuum mechanical tensor maps. Nature 404, 190–193 (2000)CrossRefGoogle Scholar
  41. 41.
    Thompson, P.M., Vidal, C., Giedd, J.N., Gochman, P., Blumenthal, J., Nicholson, R., Toga, A.W., Rapoport, J.L.: Mapping adolenscent brain change reveals dynamic wave of accelerated grey matter loss in very early-onset schizophrenia. Nature 98(20), 11650–11655 (2001)Google Scholar
  42. 42.
    Thomson, P.M., Cannon, T.D., Narr, K.L., van Erp, T., Poutanen, V.-P., Huttunen, M., Lönnqvist, J., Standertskjöld-Nordenstam, C.-G., Kaprio, J., Khaledy, M., Dali, R., Zoumalan, C.I., Toga, A.W.: Genetic influences on brain structure. Nature Neuroscience 4(12), 1–6 (2001)Google Scholar
  43. 43.
    Tustison, N.J., Amini, A.A.: Biventricular myocardial strains via nonrigid registration of anfigatomical NURBS models. IEEE Transactions on Medical Imaging 25(1), 94–112 (2006)CrossRefGoogle Scholar
  44. 44.
    Wood, N.S., Marlow, N., Costeloe, K., Gibson, A.T., Wilkinson, W.R.: Neurologic and developmental disability after extremely preterm birth. New England Journal of Medicine 343(6), 429–430 (2000)CrossRefGoogle Scholar
  45. 45.
    Young, A.A., Kraitchman, D.L., Dougherty, L., Axel, L.: Tracking and finite element analysis of stripe deformation in magnetic resonance tagging. IEEE Transactions on Medical Imaging 14(3), 413–421 (1995)CrossRefGoogle Scholar
  46. 46.
    Zerhouni, E.A., Parish, D.M., Rogers, W.J., Yang, A., Shapiro, E.P.: Human heart: Tagging with MR imaging — a method for noninvasive assessment of myocardial motion. Radiology 169(1), 59–63 (1988)Google Scholar
  47. 47.
    Zitová, B., Flusser, J.: Image registration methods: a survey. Image Vision Comput. 21(11), 977–1000 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • D. Rueckert
    • 1
  • R. Chandrashekara
    • 1
  • P. Aljabar
    • 1
  • K. K. Bhatia
    • 1
  • J. P. Boardman
    • 2
  • L. Srinivasan
    • 2
  • M. A. Rutherford
    • 2
  • L. E. Dyet
    • 2
  • A. D. Edwards
    • 2
  • J. V. Hajnal
    • 2
  • R. Mohiaddin
    • 3
  1. 1.Department of ComputingImperial College LondonUK
  2. 2.Imaging Sciences Department, Hammersmith HospitalImperial College LondonUK
  3. 3.Cardiovascular MR Unit, Royal Brompton HospitalImperial College LondonUK

Personalised recommendations