Automatic Reconstruction of Dendrite Morphology from Optical Section Stacks

  • S. Urban
  • S. M. O’Malley
  • B. Walsh
  • A. Santamaría-Pang
  • P. Saggau
  • C. Colbert
  • I. A. Kakadiaris
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4241)


The function of the human brain arises from computations that occur within and among billions of nerve cells known as neurons. A neuron is composed primarily of a cell body (soma) from which emanates a collection of branching structures (dendrites). How neuronal signals are processed is dependent on the dendrites’ specific morphology and distribution of voltage-gated ion channels. To understand this processing, it is necessary to acquire an accurate structural analysis of the cell. Toward this end, we present an automated reconstruction system which extracts the morphology of neurons imaged from confocal and multi-photon microscopes. As we place emphasis on this being a rapid (and therefore automated) process, we have developed several techniques that provide high-quality reconstructions with minimal human interaction. In addition to generating a tree of connected cylinders representing the reconstructed neuron, a computational model is also created for purposes of performing functional simulations. We present visual and statistical results from reconstructions performed both on real image volumes and on noised synthetic data from the Duke-Southampton archive.


Point Spread Function Medial Axis Dendrite Morphology Distance Transform Parseval Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Urban, S.: Automatic reconstruction of dendrite morphologies from optical sections of living fluorescently-labeled neurons. Master’s thesis, Univ. of Houston (2005)Google Scholar
  2. 2.
  3. 3.
    Al-Kofahi, K., Lasek, S., Szarowski, D., Pace, C., Nagy, G.: Rapid automated three-dimensional tracing of neurons from confocal image stacks. IEEE T. Inf. Technol. B 6, 171–187 (2002)CrossRefGoogle Scholar
  4. 4.
    Dima, A., Scholz, M., Obermayer, K.: Automatic segmentation and skeletonization of neurons from confocal microscopy images based on the 3-D wavelet transform. IEEE T Image Process. 11, 790–801 (2002)CrossRefGoogle Scholar
  5. 5.
    Uehara, C., Colbert, C., Saggau, P., Kakadiaris, I.: Towards automatic reconstruction of dendrite morphology from live neurons. In: Proc. IEEE EMBS (2004)Google Scholar
  6. 6.
    Byrd, R., Lu, P., Nocedal, J.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Stat. Comp. 16, 1190–1208 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Zhu, C., Byrd, R., Nocedal, J.: Algorithm 778: L-BFGS-B, FORTRAN subroutines for large scale bound constrained optimization. ACM T. Math. Software 23, 550–560 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Byrd, R.H., Nocedal, J., Schnabel, R.B.: Representation of quasi-Newton matrices and their use in limited memory methods. Math. Program 63, 129–156 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Konstantinidis, I., Santamaría-Pang, A., Kakadiaris, I.A.: Frames-based denoising in 3D confocal microscopy imaging. In: Proc. IEEE EMBS (2005)Google Scholar
  10. 10.
    Santamaría-Pang, A., Bildea, T.S., Konstantinidis, I., Kakadiaris, I.A.: Adaptive frames-based denoising of confocal microscopy data. In: Proc. IEEE Intl. Conf. Acoust Speech (ICASSP) (2006)Google Scholar
  11. 11.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE T. Syst. Man. Cyb. 9, 62–66 (1979)CrossRefGoogle Scholar
  12. 12.
    Bitter, I., Kaufman, A., Sato, M.: Penalized-distance volumetric skeleton algorithm. IEEE T. Vis. Comput. Gr. 7, 195–206 (2001)CrossRefGoogle Scholar
  13. 13.
    Famiglietti, E.: New metrics for analysis of dendritic branching patterns demonstrating similarities and differences in ON and ON-OFF directionally selective retinal ganglion cells. J. Comp. Neurol. 324, 295–321 (1992)CrossRefGoogle Scholar
  14. 14.
    Rall, W.: Core conductor theory and cable properties of neurons. In: Handbook of Physiology: The Nervous System, vol. 1, pp. 39–98. Williams and Wilkins (1977)Google Scholar
  15. 15.
    Cannon, R.C., Turner, D.A., Pyapali, G.K., Wheal, H.V.: An on-line archive of reconstructed hippocampal neurons. J. Neurosci. Meth. 84, 49–54 (1998)CrossRefGoogle Scholar
  16. 16.
    Duke-Southampton Archive (2005),

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • S. Urban
    • 1
  • S. M. O’Malley
    • 1
  • B. Walsh
    • 1
  • A. Santamaría-Pang
    • 1
  • P. Saggau
    • 2
  • C. Colbert
    • 3
  • I. A. Kakadiaris
    • 1
  1. 1.Dept. of Comp. Sci.Computational Biomedicine LabHouston
  2. 2.Div. of NeuroscienceBaylor College of MedicineHouston
  3. 3.Dept. of Biology & BiochemistryU. of HoustonHouston

Personalised recommendations