Segmentation of Dynamic Emission Tomography Data in Projection Space

  • Evgeny Krestyannikov
  • Jussi Tohka
  • Ulla Ruotsalainen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4241)


Dynamic emission tomography is a technique used for quantifying the biochemical and physiological processes within the body. For certain neuroimaging applications, like kinetic modelling in positron emission tomography (PET), segmenting the measured data into a fewer number of regions-of-interest (ROI) is an important procedure needed for calculation of regional time-activity curves (TACs). Conventional estimation of regional activities in image domain suffers from substantial errors due to the reconstruction artifacts and segmentation inaccuracies. In this study, we present an approach for separating the dynamic tomographic data directly in the projection space using the least-squares method. Sinogram ROIs are the fractional parts of different tissue types measured at each voxel. Regional TACs can be estimated from the segmented sinogram ROIs, thereby avoiding the image reconstruction step. The introduced technique was validated with the two dynamic synthetic phantoms simulated based on 11C- and 18F-labelled tracer distributions. From the quantitative point of view, TAC estimation from the segmented sinograms yielded more accurate results compared to the image-based segmentation.


Positron Emission Tomography Projection Space Time Activity Curve Dynamic Positron Emission Tomography Truncated Singular Value Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kamasak, M.E., Bouman, C.A., Morris, E.D., Sauer, K.: Direct reconstruction of kinetic parameter images from dynamic PET data. IEEE Tran. Med. Imag. 24(5), 636–650 (2005)CrossRefGoogle Scholar
  2. 2.
    Passchier, J., Gee, A., Willemsen, A., Vaalburg, W., van Waarde, A.: Measuring drug-related receptor occupancy with positron emission tomography. Methods 27, 278–286 (2002)CrossRefGoogle Scholar
  3. 3.
    Ashburner, J., Haslam, J., Taylor, C., Cunningham, V.J., Jones, T.: A cluster analysis approach for the characterization of dynamic PET data. In: Myers, R., Cunningham, V., Bailey, D., Jones, T. (eds.) Quantification of Brain Function using PET, pp. 301–306. Academic, San Diego (1996)CrossRefGoogle Scholar
  4. 4.
    Chen, J.L., Gunn, S., Nixon, M.S., Gunn, R.N.: Markov random field models for segmentation of PET images. In: Insana, M.F., Leahy, R.M. (eds.) IPMI 2001. LNCS, vol. 2082, pp. 468–474. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Wong, K.-P., Feng, D., Meikle, S., Fulham, M.: Segmentation of dynamic PET images using cluster analysis. IEEE Trans. Nucl. Sci. 49(1), 200–207 (2002)CrossRefGoogle Scholar
  6. 6.
    Brankov, J.G., Galatsanos, N.P., Yang, Y.Y., Wernick, M.N.: Segmentation of dynamic PET or fMRI images based on a similarity metric. IEEE Trans. Nucl. Sci. 50(5), 1410–1414 (2003)CrossRefGoogle Scholar
  7. 7.
    Kim, J., Feng, D.D., Cai, T.W., Eberl, S.: Automatic 3D temporal kinetics segmentation of dynamic emission tomography image using adaptive region growing cluster analysis. In: Nucl. Sci. Symposium Conf. Record, vol. 3, pp. 1580–1583 (2002)Google Scholar
  8. 8.
    Parker, B., Feng, D.D.: Variational segmentation and PCA applied to dynamic PET analysis. In: Jin, J.S., Eades, P., Feng, D.D., Yan, H. (eds.) Proc. Pan-Sydney Workshop on Visual Information Processing (VIP2002), Adelaide Australia. Conferences in Research and Practice in Information Technology, vol. 22, pp. 89–92 (2002)Google Scholar
  9. 9.
    Koivistoinen, H., Tohka, J., Ruotsalainen, U.: Comparison of pattern classification methods in segmentation of dynamic PET brain images. In: Proc. of Sixth Nordic Signal Processing Symposium. NORSIG 2004, pp. 73–76 (2004)Google Scholar
  10. 10.
    Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging. Society of Industrial and Applied Mathematics (2001)Google Scholar
  11. 11.
    Formiconi, A.R.: Least squares algorithm for region-of-interest evaluation in emission tomography. IEEE Tran. Med. Imag. 12(1), 90–100 (1993)CrossRefGoogle Scholar
  12. 12.
    Reutter, B.W., Gullberg, G.T., Huesman, R.H.: Direct least-squares estimation of spatiotemporal distributions from dynamic SPECT projections using a spatial segmentation and temporal B-splines. IEEE Tran. Med. Imag. 19(5), 434–450 (2000)CrossRefGoogle Scholar
  13. 13.
    Trefethen, L.N., Bau III, D.: Numerical linear algebra. Society of Industrial and Applied Mathematics, Philadelphia (1997)Google Scholar
  14. 14.
    Zubal, I., Hurrell, C., Smith, E., Rattner, Z., Gindi, G., Hoffer, P.: Computerized three-dimensional segmented human anatomy. Med. Phys. 21(2), 299–302 (1994)CrossRefGoogle Scholar
  15. 15.
    Reilhac, A., Lartizien, C., Costes, N., Sans, S., Comtat, C., Gunn., R.N., Evans, A.C.: PET-SORTEO: A Monte Carlo-based simulator with high count rate capabilities. IEEE Trans. Nuc. Sci. 51(1), 46–52 (2004)CrossRefGoogle Scholar
  16. 16.
    Magadan-Mendez, M., Kivimäki, A., Ruotsalainen, U.: ICA separation of functional components from dynamic cardiac PET data. In: IEEE Nucl. Sci. Symposium Conference Record, vol. 4, pp. 2618–2622 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Evgeny Krestyannikov
    • 1
  • Jussi Tohka
    • 1
  • Ulla Ruotsalainen
    • 1
  1. 1.Institute of Signal ProcessingTampere University of TechnologyTampereFinland

Personalised recommendations