Advertisement

Efficient Provably Secure Restrictive Partially Blind Signatures from Bilinear Pairings

  • Xiaofeng Chen
  • Fangguo Zhang
  • Yi Mu
  • Willy Susilo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4107)

Abstract

Restrictive blind signatures allow a recipient to receive a blind signature on a message unknown to the signer but the choice of the message is restricted and must conform to certain rules. Partially blind signatures allow a signer to explicitly include necessary information (expiration date, collateral conditions, or whatever) in the resulting signatures under some agreement with the receiver. Restrictive partially blind signatures incorporate the advantages of these two blind signatures. In this paper we first propose a new restrictive partially blind signature scheme from bilinear pairings. Since the proposed scheme does not use Chaum-Pedersen’s knowledge proof protocol, it is much more efficient than the original restrictive partially blind signature scheme. We then present a formal proof of security in the random oracle model. Moreover, we use the proposed signature scheme to build an untraceable off-line electronic cash system followed Brand’s construction.

Keywords

Restrictive partially blind signatures Bilinear pairings Electronic cash 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe, M., Fujisaki, E.: How to date blind signatures. In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 244–251. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  2. 2.
    Abe, M., Okamoto, T.: Provably secure partially blind signature. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 271–286. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Boldyreva, A.: Efficient threshold signature, multisignature and blind signature schemes based on the Gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairings. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairings. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Brands, S.: Untraceable off-line cash in wallet with observers. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 302–318. Springer, Heidelberg (1994)Google Scholar
  8. 8.
    Brands, S.: An efficient off-line electronic cash system based on the representation problem, Technical Report CS-R9323, Centrum voor Wiskunde en Informatica (CWI) (1993)Google Scholar
  9. 9.
    Cha, J., Cheon, J.H.: An identity-based signature from gap Diffie-Hellman groups. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Chaum, D.: Blind signature for untraceable payments. In: Advances in Cryptology-Eurocrypt 1982, pp. 199–203. Plenum Press (1982)Google Scholar
  11. 11.
    Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 319–327. Springer, Heidelberg (1990)Google Scholar
  12. 12.
    Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)Google Scholar
  13. 13.
    Hess, F.: Efficient identity based signature schemes based on pairingss. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 310–324. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Juels, A., Luby, M., Ostrovsky, R.: Security of blind signatures. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg (1997)Google Scholar
  15. 15.
    Maitland, G., Boyd, C.: A provably secure restrictive partially blind signature scheme. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 99–114. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Pointcheval, D.: Strengthened security for blind signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 391–403. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  17. 17.
    Pointcheval, D., Stern, J.: Provably secure blind signature schemes. In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 252–265. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  18. 18.
    Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. Journal of Cryptography 13(3), 361–396 (2000)zbMATHGoogle Scholar
  19. 19.
    Zhang, F., Safavi-Naini, R., Susilo, W.: Efficient verifiably encrypted signature and partially blind signature from bilinear pairings. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 191–204. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Zhang, F., Safavi-Naini, R., Susilo, W.: An efficient signature scheme from bilinear pairings and its applications. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 277–290. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Xiaofeng Chen
    • 1
  • Fangguo Zhang
    • 2
  • Yi Mu
    • 3
  • Willy Susilo
    • 3
  1. 1.Department of Computer ScienceSun Yat-sen UniversityGuangzhouP.R. China
  2. 2.Department of Electronics and Communication EngineeringSun Yat-sen UniversityGuangzhouP.R. China
  3. 3.School of Information Technology and Computer ScienceUniversity of WollongongAustralia

Personalised recommendations